K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

Áp dụng định lí côsin  trong tam giác ta có:

  B C 2 = 2 2 + 5 2 − 2.2.5. cos 45 ° = 29 − 10 2 ⇒ B C = 29 − 10 2

Chọn B

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Đặt độ dài cạnh AB là x (\(x > 0\))

Theo giả thiết ta có độ dài \(AC = AB + 2 = x + 2\)

Áp dụng định lý pitago trong tam giác vuông ta có

\(BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {{x^2} + {{\left( {x + 2} \right)}^2}}  = \sqrt {2{x^2} + 4x + 4} \)

b) Chu vi của tam giác là \(C = AB + AC + BC\)

\( \Rightarrow C = x + \left( {x + 2} \right) + \sqrt {2{x^2} + 4x + 4}  = 2x + 2 + \sqrt {2{x^2} + 4x + 4} \)

Theo giả thiết ta có

\(\begin{array}{l}C = 24 \Leftrightarrow 2x + 2 + \sqrt {2{x^2} + 4x + 4}  = 24\\ \Leftrightarrow \sqrt {2{x^2} + 4x + 4}  = 22 - 2x\\ \Rightarrow 2{x^2} + 4x + 4 = {\left( {22 - 2x} \right)^2}\\ \Rightarrow 2{x^2} + 4x + 4 = 4{x^2} - 88x + 484\\ \Rightarrow 2{x^2} - 92x + 480 = 0\end{array}\)

\( \Rightarrow x = 6\) hoặc \(x = 40\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} + 4x + 4}  = 22 - 2x\) ta thấy chỉ có  \(x = 6\) thỏa mãn phương trình

Vậy độ dài ba cạnh của tam giác là \(AB = 6;AC = 8\) và \(BC = 10\)(cm)

19 tháng 10 2023

Ko biết

 

18 tháng 4 2021

undefined

\(=\dfrac{4\sqrt{3}}{2}=2\sqrt{3}\)

c: \(AM^2=\dfrac{2\cdot\left(AB^2+AC^2\right)-BC^2}{4}=\dfrac{2\cdot\left(48^2+14^2\right)-50^2}{4}=625\)

nên AM=25(cm)

a: Xét ΔAHB vuông tại H có 

\(AB^2=AH^2+HB^2\)

nên AH=16(cm)

Xét ΔAHC vuông tại H và ΔBKC vuông tại K có 

\(\widehat{C}\) chung

Do đó: ΔAHC\(\sim\)ΔBKC

Suy ra: \(\dfrac{AH}{BK}=\dfrac{HC}{KC}=\dfrac{AC}{BC}\)

=>16/BK=20/24=5/6

=>BK=19,2(cm)

24 tháng 2 2021

\(cos\left(B+C\right)=cos\left(180^o-A\right)=-cosA=-\dfrac{\sqrt{2}}{2}\Rightarrow cosA=\dfrac{\sqrt{2}}{2}\)

Định lí cosin: 

\(BC^2=AB^2+AC^2-2AB.AC.cosA\)

\(=2^2+\left(2\sqrt{2}\right)^2-2.2.2\sqrt{2}.\dfrac{\sqrt{2}}{2}=4\)

\(\Rightarrow BC=2\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Dựng hình bình hành ABDC.

Áp dụng quy tắc hình bình hành vào ABDC ta có:

\(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD}  \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)

Gọi O là giao điểm của AD và BC, ta có:

\(AO = \sqrt {A{B^2} - B{O^2}}  = \sqrt {A{B^2} - {{\left( {\frac{1}{2}BC} \right)}^2}}  = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{a\sqrt 3 }}{2}\)

\(AD = 2AO = a\sqrt 3  \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = a\sqrt 3 \)

Vậy độ dài vectơ \(\overrightarrow {AB}  + \overrightarrow {AC} \) là \(a\sqrt 3 \)

a: vecto AB=(1;1)

vecto AC=(2;6)

vecto BC=(1;5)

b: \(AB=\sqrt{1^2+1^2}=\sqrt{2}\)

\(AC=\sqrt{2^2+6^2}=2\sqrt{10}\)

\(BC=\sqrt{1^2+5^2}=\sqrt{26}\)

=>\(C=\sqrt{2}+2\sqrt{10}+\sqrt{26}\)

c: Tọa độ trung điểm của AB là:

x=(1+2)/2=1,5 và y=(-1+0)/2=-0,5

Tọa độ trung điểm của AC là;

x=(1+3)/2=2 và y=(-1+5)/2=4/2=2

Tọa độ trung điểm của BC là:

x=(2+3)/2=2,5 và y=(0+5)/2=2,5

d: ABCD là hình bình hành

=>vecto AB=vecto DC

=>3-x=1 và 5-y=1

=>x=2 và y=4