Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AHBC có
M là trung điểm của HC
M là trung điểm của AB
Do đó: AHBC là hình bình hành
Suy ra: AC//BH
hay BH\(\perp\)AB
a.Xét tam giác AMH và tam giác BMC có:
MA=MB(M là trung điểm AB)
MH=MC(gt)
góc M1=góc M2( đối đỉnh)
=> tam giác AMH=tam giác BMC( gcg)
b. Ta có: MA=MB và MH=MC (gt)
=> BHAC là hính bính hành
=> AH // BC
c.Bn xem lại câu này nha ..IN đề k cho bn ơi
( p/S: hình vẽ k dc đẹp..bn thông cảm ^^)
a,Xét \(\Delta AMH\) và \(\Delta BMC\) có:
MA = MB (gt)
góc AMH = góc BMC (gt)
MH = MC (gt)
Do đó \(\Delta AMH=\Delta BMC\left(c.g.c\right)\)
b,Vì \(\Delta AMH=\Delta BMC\) (câu a) => góc AHM = góc BCM (2 góc tương ứng)
Mà góc AHM và góc BCM là cặp góc so le trong nên AH // BC
c, đề thiếu????
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hbh
=>AE=BD
b: Xét ΔABC có góc ACB<góc ABC
nên AB<AC
Xét ΔABC có
AB<AC
BD,CD lần lượt là hình chiếu của AB,AC trên BC
=>BD<CD
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hbh
=>AF//DC
=>AF//BC
mà AE//BC
nên F,A,E thẳng hàng
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hìnhbình hành
=>AE=BD
b: góc ACB<góc ABC
=>AB<AC
=>DB<DC
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hình bình hành
=>AF//DC
=>F,A,E thẳng hàng
a) Xét ΔACM và ΔBMN có
AM=BM(M là trung điểm của AB)
\(\widehat{AMC}=\widehat{BMN}\)(hai góc đối đỉnh)
CM=MN(gt)
Do đó: ΔAMC=ΔBMN(c-g-c)
b) Ta có: ΔAMC=ΔBMN(cmt)
nên \(\widehat{CAM}=\widehat{NBM}\)(hai góc tương ứng)
mà \(\widehat{CAM}=90^0\)(\(\widehat{BAC}=90^0\), M∈AB)
nên \(\widehat{NBM}=90^0\)
⇒\(\widehat{NBA}=90^0\)
hay NB⊥AB(đpcm)
c) Xét ΔAMN và ΔBMC có
MA=MB(M là trung điểm của AB)
\(\widehat{AMN}=\widehat{BMC}\)(hai góc đối đỉnh)
MN=MC(gt)
Do đó: ΔAMN=ΔBMC(c-g-c)
⇒AN=BC(hai cạnh tương ứng) và \(\widehat{NAM}=\widehat{CBM}\)(hai góc tương ứng)
mà \(\widehat{NAM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong
nên AN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
tự làm đi
Xét tứ giác ACBH có
M là trung điểm chung của AB và CH
=>ACBH là hbh
=>BH//AC
=>BH vuông góc AB