Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A C B D 60 50 1 2
Xét Δ ABC có: ABC + C + A = 180o
=> ABC + 50o + 60o = 180o
=> ABC + 110o = 180o
=> ABC = 180o - 110o = 70o
Vì BD là phân giác của ABC nên B1 = B2 = \(\frac{ABC}{2}=\frac{70^o}{2}=35^o\)
- Xét Δ ABD có: A + ADB + B1 = 180o
=> 60o + ADB + 35o = 180o
=> 95o + ADB = 180o
=> ADB = 180o - 95o = 85o
- Ta có: ADB + CDB = 180o (kề bù)
=> 85o + CDB = 180o
=> BDC + 85o = 180o
=> BDC = 180o - 85o = 95o
\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(3.2\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{3^6.2^6.2^9}\)
\(=3^2\)
\(=9\)
Xét tam giác ABC có
góc A + góc B + góc C = 180^0
góc A + 80^0 + 30^0 = 180^0
góc A + 110^0 = 180^0
góc A = 180^0 - 110^0
góc A = 70^0
Vì tia AD là tia phân giác của góc A nên:
góc A1 = góc A2 = góc A/2 = 70^0/2 = 35^0
Xét tam giác ADB có :
góc A2 + góc B + góc ADB = 180^0
35^0 + 80^0 + góc ADB = 180^0
115^0 + góc ADB = 180^0
góc ADB = 180^0 - 115^0
góc ADB = 65^0
Xét tam giác ADB có :
góc A1 + góc C + góc ADC = 180^0
35^0 + 30^0 + góc ADC = 180^0
65^0 + góc ADC = 180^0
góc ADC = 180^0 - 65^0
góc ADC = 115^0
( Có thể giải nhiều cách nha bạn . Ví dụ như áp dụng góc ngoài của tam giác hay là theo cách của mình sao cũng được ! )
Sai thì thôi nhá! Đừng có chọn sai! : | :v
Giải
Ta có hình vẽ:
D A B C 90 0 80 o
Ta có : Góc C > D và lớn hơn : 900 - 80o = 100
\(\Rightarrow\widehat{bAc}=10^o\)
Nhận xét: Tia phân giác chia tam giác thành hai phần bằng nhau.
\(\Rightarrow2_p=10^o:2=5^o\) ( 2p là hai phần nha)
\(\Rightarrow\widehat{aDc}=90^o-5^o=85^o\)
\(\Rightarrow\widehat{aDb}=80^o-5^o=75^o\)
Trần Nguyễn Hoài Thư
Bạn tự vẽ hình ( hình dễ lắm nhé )
Giải
Xét \(\Delta ABC\) có :
\(\widehat{BAC}+\widehat{CBA}+\widehat{ACB}=180^O\)
\(\Rightarrow\widehat{BAC}=180^O-80^O-30^O\)
\(\Rightarrow\widehat{BAC}=70\)
Ta có : AD là tia phân giác của \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{70^O}{2}=35^O\)
Xét \(\Delta ABD\) có :
\(\widehat{ABD}+\widehat{BAD}+\widehat{BDA}=180^O\)
\(\Rightarrow\widehat{ADB}=180^O-35^O-80^O=65^O\) ( Vì \(\widehat{BAD}=35^O;\widehat{ABD}=80^O\) (CMT )
CMTT ta có :
\(\widehat{ADC}=180^O-30^O-35^O=115^O\)
Vậy \(\widehat{ADC}=115^O\) và \(\widehat{ADB}=65^O\)
Chúc bạn học tốt
Trong ΔABC ta có:
∠A + ∠B + ∠C = 180o(tổng ba góc trong tam giác)
⇒∠B = 180o - (∠A +∠C )
⇒x = 180o - (60o + 50o) = 70o
(∠B1) =(∠B2 ) = (1/2 )∠B (vì BD là tia phân giác)
⇒ ∠B1 = ∠B2 = 70o : 2 = 35o
Trong ΔBCD ta có ∠(ADB) là góc ngoài tại đỉnh D
⇒ ∠(ADB) = ∠(B1 ) + ∠C (tính chất góc ngoài tam giác)
Nên ∠(ADB) = 35º + 50º = 85º
+) Do ∠(ADB) + ∠(BDC) = 180o(hai góc kề bù)
⇒∠(BDC) = 180o-∠(ADB) = 180o - 85o = 95o