Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\) và \(\Delta HBA\) có \(\widehat{BAC}=\widehat{BHA}=90^o;\widehat{B}-\text{góc chung}\)
\(\Rightarrow \Delta ABC\sim\Delta HBA(g.g)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{HB}{BA}\Rightarrow AB^2=BH.BC\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: BC=10cm
AH=4,8cm
c: Xét ΔABH vuông tại H có HM là đườg cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN\(\sim\)ΔACB
\(a)\) Xét \(\Delta ABC\) và \(\Delta HBA:\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{ABC}chung.\\ \Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)
\(b)\) Xét \(\Delta ABC\) vuông tại A:
\(+)BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)\(+)AH.BC=AB.AC\) (Hệ thức lượng).\(\Rightarrow AH.10=6.8.\\ \Rightarrow AH=4,8\left(cm\right).\)\(c)\) Xét \(\Delta ABH\) vuông tại H, đường cao MH:\(AH^2=AM.AB\) (Hệ thức lượng). \(\left(1\right)\)Xét \(\Delta ACH\) vuông tại H, đường cao NH:\(AH^2=AN.AC\) (Hệ thức lượng). \(\left(2\right)\)Từ \(\left(1\right);\left(2\right)\Rightarrow AM.AB=AN.AC.\)Xét \(\Delta ACB\) và \(\Delta AMN:\)\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AC}{AM}.\)\(\widehat{A}chung.\\ \dfrac{AB}{AN}=\dfrac{AC}{AM}\left(cmt\right).\\ \Rightarrow\Delta ACB\sim\Delta AMN\left(c-g-c\right).\)a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Ta có: ΔABC\(\sim\)ΔHAC
nên AC/HC=BC/AC
hay \(AC^2=BC\cdot HC\)
c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
a, Xét Δ ABC và Δ HAC, có :
\(\widehat{ACB}=\widehat{HCA}\) (góc chung)
\(\widehat{BAC}=\widehat{AHC}=90^o\)
=> Δ ABC ∾ Δ HAC (g.g)
b, Ta có : Δ ABC ∾ Δ HAC (cmt)
=> \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
=> \(AC^2=BC.HC\)
c, Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> \(BC=5\left(cm\right)\)
a) Xét ΔHAC và ΔKBC có:
\(\widehat{AHC}=\widehat{BKC}=90\left(gt\right)\)
\(\widehat{C}\) : góc chung
=>ΔHAC~ΔKBC(g.g)
b)Vì ΔHAC~ΔKBC(cmt)
=>\(\frac{HC}{AC}=\frac{KC}{BC}\) hay \(\frac{AC}{HC}=\frac{BC}{KC}\)
Xét ΔABC và ΔHKC có:
\(\widehat{C}\) : góc chung
\(\frac{AC}{HC}=\frac{BC}{KC}\) (cmt)
=>ΔABC~ΔHKC(c.g.c)
c)Vì ΔABC~ΔHKC(cmt)
=>\(\widehat{ABC}=\widehat{HKC}=50\)