Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ thấy A, H, K thẳng hàng.
Ta có \(\widehat{KCB}=\widehat{HCB}=90^o-\widehat{ABC}=\widehat{KAB}\).
Suy ra tứ giác ACKB nội tiếp.
b) \(\widehat{ABD}=\widehat{AA'C};\widehat{ADB}=\widehat{ACA'}=90^o\Rightarrow\Delta ABD\sim\Delta AA'C\left(g.g\right)\Rightarrow\widehat{BAD}=\widehat{A'AC}\)
\(\Rightarrow\widehat{AA'C}=90^o-\widehat{ABC}=90^o-\widehat{AEF}\Rightarrow AA'\perp EF\)
c) Ta có BH // A'C (do cùng vuông góc với AC), CH // A'B (do cùng vuông góc với AB) nên tứ giác BHCA' là hình bình hành. Suy ra H, I, A' thẳng hàng.
d) Do OI là đường trung bình của tam giác A'AH nên OI // AH,\(\dfrac{OI}{AH}=\dfrac{1}{2}=\dfrac{IG}{AG}\Rightarrow\) H, G, O thẳng hàng và \(\dfrac{OG}{HG}=\dfrac{1}{2}\). Từ đó \(S_{AHG}=2S_{AOG}\) (đpcm)
a: Xét (O) có
ΔADC nội tiếp
AD là đường kính
Do đo: ΔADC vuông tại C
Xét tứ giác ODCE có \(\widehat{EOD}+\widehat{ECD}=180^0\)
nên ODCE là tứ giác nội tiếp
b: Xét ΔEAD có
EO làđường cao
EO là đường trung tuyến
Do đo: ΔEAD cân tại E
=>EA=ED
c: Xét ΔAEO vuông tại O và ΔADC vuông tại C có
góc DAC chung
Do đo: ΔAEO\(\sim\)ΔADC
Suy ra: AE/AD=AO/AC
hay \(AE\cdot AC=AO\cdot AD=2R^2\)
a: Xét tứ giác MNBD có
\(\widehat{BDM}+\widehat{BNM}=90^0+90^0=180^0\)
=>MNBD là tứ giác nội tiếp
=>\(\widehat{NBD}+\widehat{NMD}=180^0\)
mà \(\widehat{NBD}+\widehat{ABC}=180^0\)(hai góc kề bù)
nên \(\widehat{NMD}=\widehat{ABC}\left(1\right)\)
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AMC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AMC}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{NMD}=\widehat{AMC}\)
=>\(\widehat{NMA}=\widehat{CMA}\)
=>MA là phân giác của góc NMC
b: Ta có: NBDM là tứ giác nội tiếp
=>\(\widehat{DBM}=\widehat{DNM}\)
=>\(\widehat{MBC}=\widehat{ENM}\left(3\right)\)
Xét (O) có
\(\widehat{MBC}\) là góc nội tiếp chắn cung MC
\(\widehat{MAC}\) là góc nội tiếp chắn cung MC
Do đó: \(\widehat{MBC}=\widehat{MAC}\left(4\right)\)
Từ (3) và (4) suy ra \(\widehat{ENM}=\widehat{MAC}\)
=>\(\widehat{ENM}=\widehat{EAM}\)
=>ANME là tứ giác nội tiếp
=>\(\widehat{AEM}+\widehat{ANM}=180^0\)
=>\(\widehat{AEM}=90^0\)
=>ME\(\perp\)AC
a) Xét tứ giác ABHE có
\(\widehat{AHB}=\widehat{AEB}\left(=90^0\right)\)
\(\widehat{AHB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB
Do đó: ABHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc HBC+góc HCB=90 độ-góc ACB+90 độ-góc ABC=góc BAC
=>góc BHC+góc BAC=180 độ
H đối xứng K qua BC
=>BH=BK và CH=CK
Xét ΔBHC và ΔBKC có
BH=BK
CH=CK
BC chung
=>ΔBHC=ΔBKC
=>góc BKC=góc BHC
=>góc BKC+góc BAC=180 độ
=>ABKC nội tiếp
b: Gọi Ax là tiếp tuyến của (O) tại A
=>góc xAC=góc ABC=góc AEF
=>EF//Ax
=>EF vuông góc OA
c: Xét tứ giác BHCA' có
BH//CA'
BA'//CH
=>BHCA' là hbh
=>H,I,A' thẳng hàng
1:Xét tứ giác CEHD có
góc CEH+góc CDH=180 độ
=>CEHD là tứ giác nội tiếp
2 Xét (O) có
ΔAKC nội tiếp
AK là đường kính
=>ΔACK vuông tại C
Xét ΔACK vuông tại C và ΔADB vuông tại D có
góc AKC=góc ABD
=>ΔACK đồng dạng với ΔADB
=>AC/AD=AK/AB
=>AB*AC=AK*AD
a: góc AEB=góc AHB=90 độ
=>AEHB nội tiếp
góc AGD=1/2*180=90 độ
=>GD vuông góc AH
=>GD//BC
b: ABHE nội tiếp
=>góc EHC=góc BAD
mà góc BAD=góc DCB
nên góc EHC=góc DCB
=>EH//CD
góc ACD=1/2*180=90 độ
=>AC vuông góc CD
=>EH vuông góc AC tại N
=>góc ANH=90 độ
Xét đường tròn (O) có: \(\Delta\)ACD nt; AD là đường kính
\(\Rightarrow\) \(\Delta\)ACD là tam giác vuông tại C (sự xác định đường tròn)
\(\Rightarrow\) \(\widehat{C}\) = 90o
Xét tứ giác OECD có: \(\widehat{EOD}+\widehat{C}=90^o+90^o=180^o\) (OE \(\perp\) AD tại O)
\(\widehat{EOD}\) và \(\widehat{C}\) là 2 góc đối nhau
\(\Rightarrow\) Tứ giác OECD nt đường tròn (định lý tứ giác nt)
b, Xét tam giác AED có: EO \(\perp\) AD tại O (gt); EO là trung tuyến ứng với AD
\(\Rightarrow\) \(\Delta\)AED là tam giác cân tại E (dhnb tam giác cân)
\(\Rightarrow\) EA = ED (đpcm)
c, Vì \(\Delta\)AED là tam giác cân tại E (cmb)
\(\Rightarrow\) \(\widehat{EAD}=\widehat{EDA}\) (t/c) (1)
Lại có: \(\Delta\)AOC cân tại O (OA = OC = R)
\(\Rightarrow\) \(\widehat{OAE}=\widehat{OCE}\) (t/c) (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat{EDA}=\widehat{OCE}\)
Xét tam giác AOC và tam giác AED có:
\(\widehat{A}\) chung
\(\widehat{OCA}=\widehat{EDA}\) (cmt)
\(\Rightarrow\) \(\Delta\)AOC ~ \(\Delta\)AED (gg)
\(\Rightarrow\) \(\dfrac{AO}{AE}=\dfrac{AC}{AD}\) (tỉ số đồng dạng)
\(\Rightarrow\) AE.AC = AO.AD
Mà trong đường tròn (O): AO = R; AD = 2R (AO là bk; AD là đk)
\(\Rightarrow\) AE.AC = R.2R = 2R2 (đpcm)
Chúc bn học tốt!