K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

A B C H I K M

a, Áp dụng định lí Pytago vào câc tam giác vuông ta được

\(AK^2+BH^2+CI^2=AM^2-MK^2+BM^2-MH^2+CM^2-MI^2\)

                                       \(=\left(AM^2-MI^2\right)+\left(BM^2-MK^2\right)+\left(CM^2-MH^2\right)\)

                                         \(=AI^2+BK^2+CH^2\)

b, Đặt \(P=AK^2+BH^2+CI^2\)

\(\Rightarrow2P=\left(AK^2+BH^2+CI^2\right)+\left(AK^2+BH^2+CI^2\right)\)

             \(=\left(AK^2+BH^2+CI^2\right)+\left(AI^2+CH^2+BK^2\right)\)

             \(=\left(AK^2+BK^2\right)+\left(BH^2+HC^2\right)+\left(CI^2+IA^2\right)\)

Ta có bđt sau \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)(tự chứng minh)

Áp dụng ta được \(2P\ge\frac{\left(AK+BK\right)^2}{2}+\frac{\left(BH+HC\right)^2}{2}+\frac{\left(CI+IA\right)^2}{2}\)

                                   \(=\frac{AB^2}{2}+\frac{BC^2}{2}+\frac{CA^2}{2}=\frac{AB^2+BC^2+CA^2}{2}\)

\(\Rightarrow P\ge\frac{AB^2+BC^2+CA^2}{4}\)không đổi

Dấu "=" xảy ra <=> M là giao điểm 3 đường trung trực của tam giác ABC

25 tháng 2 2020

A B C K I M H

a ) Áp dụng đinh lí Pytago vào các tam giác vuông ta được :
\(AK^2+BH^2+CI^2=AM^2-MK^2+BM^2-MH^2+CM^2-MI^2\)

\(=\left(AM^2-MI^2\right)+\left(BM^2-MK^2\right)+\left(CM^2-MH^2\right)\)

\(=AI^2+BK^2+CH^2\)

b ) Đặt \(B=AK^2+BH^2+CI^2\)

\(\Rightarrow2B=\left(AK^2+BH^2+CI^2\right)+\left(AK^2+BH^2+CI^2\right)\)

\(=\left(AK^2+BH^2+CI^2\right)+\left(AI^2+CH^2+BK^2\right)\)

\(=\left(AK^2+BK^2\right)+\left(BH^2+HC^2\right)+\left(CI^2+IA^2\right)\)

Ta có BĐT sau : \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)( tự chứng minh )

Áp dụng ta được : \(2B\ge\frac{\left(AK+BK\right)^2}{2}+\frac{\left(BH+HC\right)^2}{2}+\frac{\left(CI+IA\right)^2}{2}\)

\(=\frac{AB^2}{2}+\frac{BC^2}{2}+\frac{CA^2}{2}=\frac{AB^2+BC^2+CA^2}{2}\)

\(\Rightarrow B\ge\frac{AB^2+BC^2+CA^2}{4}\) không đổi

Dấu " = " xảy ra \(\Leftrightarrow M\) là giao điểm 3 đường trung trực của tam giác ABC

Chúc bạn học tốt !!

a:

Gọi O là trung điểm của CI

Xét tứ giác CKIH có

\(\widehat{CKI}+\widehat{CHI}=90^0+90^0=180^0\)

=>CKIH là tứ giác nội tiếp đường tròn đường kính CI

=>C,K,H,I cùng thuộc (O)

b: Xét (O) có

OI là bán kính

AB\(\perp\)OI tại I

Do đó; AB là tiếp tuyến của (O)

c: Ta có: ΔOKI cân tại O

mà OE là đường cao

nên OE là phân giác của góc KOI

Xét ΔOKE và ΔOIE có

OK=OI

\(\widehat{KOE}=\widehat{IOE}\)

OE chung

Do đó: ΔOKE=ΔOIE

=>\(\widehat{OKE}=\widehat{OIE}\)

=>\(\widehat{OKE}=90^0\)

=>EK là tiếp tuyến của (O)

b: Xét ΔAKB vuông tại K và ΔAKC vuông tại K có 

AB=AC
AK chung

Do đó: ΔAKB=ΔAKC

Suy ra: KB=KC

Xét ΔMBK vuông tại M và ΔNCK vuông tại N có 

KB=KC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔMBK=ΔNCK

Suy ra: KM=KN(1)

Xét ΔAKB vuông tại K có KM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot MB=KM^2\left(2\right)\)

Xét ΔAKC vuông tại K có KN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot NC=KN^2\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AM\cdot MB=AN\cdot NC\)

NV
2 tháng 8 2021

a. Ta có tứ giác AIHK là hình chữ nhật (tứ giác có 3 góc vuông)

\(\Rightarrow\widehat{IKH}=\widehat{IAH}\) 

Mà \(\widehat{IAH}=\widehat{KCH}\) (cùng phụ \(\widehat{ABC}\))

\(\Rightarrow\widehat{IKH}=\widehat{KCH}\)

b.

Gọi D và E lần lượt là trung điểm IH và HK

\(\Rightarrow\) MD và NE lần lượt là đường trung bình các tam giác BIH và HKC

\(\Rightarrow\left\{{}\begin{matrix}MD\perp HI\\MD=\dfrac{1}{2}BI\end{matrix}\right.\) và \(\left\{{}\begin{matrix}NE\perp HK\\NE=\dfrac{1}{2}CK\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}S_{MIH}=\dfrac{1}{2}MD.IH=\dfrac{1}{2}.\dfrac{1}{2}BI.IH=\dfrac{1}{2}S_{BIH}\\S_{NHK}=\dfrac{1}{2}NE.HK=\dfrac{1}{2}.\dfrac{1}{2}CK.HK=\dfrac{1}{2}S_{HCK}\end{matrix}\right.\)

Đồng thời AIHK là hình chữ nhật \(\Rightarrow S_{IHK}=\dfrac{1}{2}S_{AIHK}\)

Do đó:

\(S_{MNKI}=S_{MIH}+S_{NHK}+S_{IHK}=\dfrac{1}{2}\left(S_{BIH}+S_{AIHK}+S_{HCK}\right)=\dfrac{1}{2}S_{ABC}\) (đpcm)

NV
2 tháng 8 2021

undefined