Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Áp dụng đinh lí Pytago vào các tam giác vuông ta được :
\(AK^2+BH^2+CI^2=AM^2-MK^2+BM^2-MH^2+CM^2-MI^2\)
\(=\left(AM^2-MI^2\right)+\left(BM^2-MK^2\right)+\left(CM^2-MH^2\right)\)
\(=AI^2+BK^2+CH^2\)
b ) Đặt \(B=AK^2+BH^2+CI^2\)
\(\Rightarrow2B=\left(AK^2+BH^2+CI^2\right)+\left(AK^2+BH^2+CI^2\right)\)
\(=\left(AK^2+BH^2+CI^2\right)+\left(AI^2+CH^2+BK^2\right)\)
\(=\left(AK^2+BK^2\right)+\left(BH^2+HC^2\right)+\left(CI^2+IA^2\right)\)
Ta có BĐT sau : \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)( tự chứng minh )
Áp dụng ta được : \(2B\ge\frac{\left(AK+BK\right)^2}{2}+\frac{\left(BH+HC\right)^2}{2}+\frac{\left(CI+IA\right)^2}{2}\)
\(=\frac{AB^2}{2}+\frac{BC^2}{2}+\frac{CA^2}{2}=\frac{AB^2+BC^2+CA^2}{2}\)
\(\Rightarrow B\ge\frac{AB^2+BC^2+CA^2}{4}\) không đổi
Dấu " = " xảy ra \(\Leftrightarrow M\) là giao điểm 3 đường trung trực của tam giác ABC
Chúc bạn học tốt !!
a:
Gọi O là trung điểm của CI
Xét tứ giác CKIH có
\(\widehat{CKI}+\widehat{CHI}=90^0+90^0=180^0\)
=>CKIH là tứ giác nội tiếp đường tròn đường kính CI
=>C,K,H,I cùng thuộc (O)
b: Xét (O) có
OI là bán kính
AB\(\perp\)OI tại I
Do đó; AB là tiếp tuyến của (O)
c: Ta có: ΔOKI cân tại O
mà OE là đường cao
nên OE là phân giác của góc KOI
Xét ΔOKE và ΔOIE có
OK=OI
\(\widehat{KOE}=\widehat{IOE}\)
OE chung
Do đó: ΔOKE=ΔOIE
=>\(\widehat{OKE}=\widehat{OIE}\)
=>\(\widehat{OKE}=90^0\)
=>EK là tiếp tuyến của (O)
b: Xét ΔAKB vuông tại K và ΔAKC vuông tại K có
AB=AC
AK chung
Do đó: ΔAKB=ΔAKC
Suy ra: KB=KC
Xét ΔMBK vuông tại M và ΔNCK vuông tại N có
KB=KC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMBK=ΔNCK
Suy ra: KM=KN(1)
Xét ΔAKB vuông tại K có KM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot MB=KM^2\left(2\right)\)
Xét ΔAKC vuông tại K có KN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot NC=KN^2\left(3\right)\)
Từ (1), (2) và (3) suy ra \(AM\cdot MB=AN\cdot NC\)
a. Ta có tứ giác AIHK là hình chữ nhật (tứ giác có 3 góc vuông)
\(\Rightarrow\widehat{IKH}=\widehat{IAH}\)
Mà \(\widehat{IAH}=\widehat{KCH}\) (cùng phụ \(\widehat{ABC}\))
\(\Rightarrow\widehat{IKH}=\widehat{KCH}\)
b.
Gọi D và E lần lượt là trung điểm IH và HK
\(\Rightarrow\) MD và NE lần lượt là đường trung bình các tam giác BIH và HKC
\(\Rightarrow\left\{{}\begin{matrix}MD\perp HI\\MD=\dfrac{1}{2}BI\end{matrix}\right.\) và \(\left\{{}\begin{matrix}NE\perp HK\\NE=\dfrac{1}{2}CK\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}S_{MIH}=\dfrac{1}{2}MD.IH=\dfrac{1}{2}.\dfrac{1}{2}BI.IH=\dfrac{1}{2}S_{BIH}\\S_{NHK}=\dfrac{1}{2}NE.HK=\dfrac{1}{2}.\dfrac{1}{2}CK.HK=\dfrac{1}{2}S_{HCK}\end{matrix}\right.\)
Đồng thời AIHK là hình chữ nhật \(\Rightarrow S_{IHK}=\dfrac{1}{2}S_{AIHK}\)
Do đó:
\(S_{MNKI}=S_{MIH}+S_{NHK}+S_{IHK}=\dfrac{1}{2}\left(S_{BIH}+S_{AIHK}+S_{HCK}\right)=\dfrac{1}{2}S_{ABC}\) (đpcm)
a, Áp dụng định lí Pytago vào câc tam giác vuông ta được
\(AK^2+BH^2+CI^2=AM^2-MK^2+BM^2-MH^2+CM^2-MI^2\)
\(=\left(AM^2-MI^2\right)+\left(BM^2-MK^2\right)+\left(CM^2-MH^2\right)\)
\(=AI^2+BK^2+CH^2\)
b, Đặt \(P=AK^2+BH^2+CI^2\)
\(\Rightarrow2P=\left(AK^2+BH^2+CI^2\right)+\left(AK^2+BH^2+CI^2\right)\)
\(=\left(AK^2+BH^2+CI^2\right)+\left(AI^2+CH^2+BK^2\right)\)
\(=\left(AK^2+BK^2\right)+\left(BH^2+HC^2\right)+\left(CI^2+IA^2\right)\)
Ta có bđt sau \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)(tự chứng minh)
Áp dụng ta được \(2P\ge\frac{\left(AK+BK\right)^2}{2}+\frac{\left(BH+HC\right)^2}{2}+\frac{\left(CI+IA\right)^2}{2}\)
\(=\frac{AB^2}{2}+\frac{BC^2}{2}+\frac{CA^2}{2}=\frac{AB^2+BC^2+CA^2}{2}\)
\(\Rightarrow P\ge\frac{AB^2+BC^2+CA^2}{4}\)không đổi
Dấu "=" xảy ra <=> M là giao điểm 3 đường trung trực của tam giác ABC