Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có góc A chung và 2 góc vuông => ĐPCM
b) Xét EHB và DHC có:
2 góc vuông và 2 góc đối đỉnh EHB và DHC
=> EHB đồng dạng với DHC
=>BH/CH=EH/DH
=>BH.DH=EH.CH
c)Từ câu a ta suy ra được tỉ số : AB/AC=AD/AE
và có góc A chung .
Từ đó suy ra: ADE đồng dạng với ABC
=> góc ADE= góc ABC
d) Ta có IO là đường trung bình ( tự chứng minh )
=> IO//AH => AHM đồng dạng với IOM
Tỉ số cạnh = AM/IM =2 ( do là đường trung bình )
Tỉ số diện tích của AHM so với IOM là 22=4
Vậy SAHM=4.SIOM
Hình (tự vẽ)
a) Xét \(\Delta ABDva\Delta ACE\):
\(\widehat{A}\left(chung\right)\)
\(\widehat{E}=\widehat{D}\left(=90'\right)\)
\(=>\Delta ABD\)đồng dạng \(\Delta ACE\left(g-g\right)\)
\(=>\frac{AB}{AC}=\frac{AD}{AE}< =>AB.AE=AC.AD\)
b)xét \(\Delta ADEva\Delta ABC\)
\(\widehat{A}\left(chung\right)\)
\(\frac{AB}{AC}=\frac{AD}{AE}\)
\(=>\Delta ADE\)đồng dạng \(\Delta ABC\left(c-g-c\right)\)
c)Lưu Ý! Đề phải là DE cắt CB tại I
CM:
\(\widehat{IEB}=\widehat{AED}\)(đối đỉnh)
\(\widehat{AED}=\widehat{ACB}\)(tam giác ADE đồng dạng với tam giác ABC)
\(=>\widehat{IEB}=\widehat{ACB}\)
Lại có góc I chung
\(=>\Delta IBE\) đồng dạng với \(\Delta IDC\left(g-g\right)\)
d) từ c)=>\(\frac{IB}{ID}=\frac{IE}{IC}< =>ID.IE=IB.IC=\left(OI-OB\right)\left(OI+OC\right)\)
Mà OC=OB(gt)
\(=>ID.IE=\left(OI+OC\right)\left(OI-OC\right)=OI^2-OC^2\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC