K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

A B C E D K ) ) ) )

    GT  

  △ABC (BAC = 90o , AB < AC)

  AE ⊥ BC (E \in  BC) 

  EAD = DAK = EAC : 2

  DK ⊥ AC (K \in  AC) 

   KL

 a, △AED = △AKD

 b, KD // AB , △ADB cân

 c, AC < AE + CD

Giải:

a, Xét △AED vuông tại E và △AKD vuông tại K

Có: EAD = KAD (gt)

      AD là cạnh chung

=> △AED = △AKD (ch-gn)

b, Vì KD ⊥ AC (gt) mà AB ⊥ AC 

=> KD // AB (từ vuông góc đến song song)

=> KDA = DAB (2 góc so le trong)

Mà KDA = EDA (△AKD = △AED)

=> DAB = EDA

=> DAB = BDA 

=> △ABD cân tại B

c, Vì △AED = △AKD (cmt)

=> AE = AK (2 cạnh tương ứng)

Xét △DKC vuông tại K có: KC < DC (quan hệ cạnh)

Ta có: AC = AK + KC = AE + KC < AE + DC (đpcm)