Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đỗ Hương GiangNguyễn Lê Hoàng ViệtNguyễn Huy ThắngNguyễn Huy Tú
Trần Việt LinhVõ Đông Anh TuấnPhương An

A B C H E F
Hình minh họa nhé !
a, Xét \(\Delta\)ABH và \(\Delta\)ACH ta có
AB = AC (gt)
^AHB = ^AHC = 90^0
AH chung
=> \(\Delta\)ABH = \(\Delta\)ACH (c.g.c) (1)
b, Vì (1) ta suy ra : BH = HC (tương ứng)
Ta có : \(BH=HC=\frac{BC}{2}=\frac{12}{2}=6\)cm
Áp dụng định lí Py ta go ta có :
\(AB^2=BH^2+AH^2\)
\(10^2=6^2+AH^2\)
\(100-36=AH^2\Leftrightarrow64=AH^2\Leftrightarrow AH=8\)cm
Tự xử c;d bn nhé !
Lâu rồi chưa làm dạng này có gì sai sót thì bạn comment xuống dưới nhé !
A H B C E F K
Lấy K đối xứng mới H qua B
Xét tam giác KAH có BK=BH; AF=FH nên BF là đường trung bình của tam giác HAH
\(\Rightarrow BF=\frac{AK}{2}\)
Tương tự \(HE=\frac{AC}{2}\)
Theo BĐT tam giác ta có được \(BF+HE=\frac{AC+AK}{2}>\frac{KC}{2}=\frac{KB+BC}{2}=\frac{BH+BC}{2}=\frac{\frac{1}{2}BC+BC}{2}=\frac{3}{4}BC\)
Vậy ta có đpcm
Bạn CTV gì đó ơi bạn ý nhờ làm câu d mà :)) Sao lại tự xử c,d được :V

Bài 1:
a) Xét tam giác ABM và tam giác ACM
có: AB = AC (gt)
góc BAM = góc CAM (gt)
AM là cạnh chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)
b) Xét tam giác ABC
có: AB = AC
=> tam giác ABC cân tại A ( định lí tam giác cân)
mà AM là tia phân giác xuất phát từ đỉnh A ( M thuộc BC)
=> M là trung điểm của BC, AM vuông góc với BC ( tính chất đường phân giác, đường cao, đường trung trực, đường trung tuyến, đường cao xuất phát từ đỉnh tam giác cân)
Bài 2:
a) Xét tam giác ABD và tam giác EBD
có: AB = EB (gt)
góc ABD = góc EBD (gt)
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng)
c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> góc BAD = góc BED ( 2 góc tương ứng)
mà góc BAD = 90 độ ( tam giác ABC vuông tại A)
=> góc BED = 90 độ

a) ΔABD=ΔEBDΔABD=ΔEBD
b) AH//DE;ΔADIAH//DE;ΔADI cân
c) AE là tia phân giác của ˆHACHAC^
d) DC = 2AI
Giải thích các bước giải:
a) BD là phân giác của ˆABCABC^
⇒ˆABD=ˆEBD⇒ABD^=EBD^
Xét ΔABDΔABD và ΔEBDΔEBD có:
ˆBAD=ˆBED=900BAD^=BED^=900
BD chung
ˆABD=ˆEBDABD^=EBD^ (cmt)
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (cạnh huyền - góc nhọn) (*)
b) AH⊥BC;DE⊥BCAH⊥BC;DE⊥BC
⇒AH//ED⇒AH//ED
⇒ˆAID=ˆIDE⇒AID^=IDE^
Từ (*)⇒ˆADI=ˆIDE⇒ADI^=IDE^
⇒ˆAID=ˆADI⇒AID^=ADI^
⇒ΔAID⇒ΔAID cân tại A
c) Từ (*)⇒AB=BE⇒AB=BE (hai cạnh tương ứng)
⇒ΔABE⇒ΔABE cân tại B
AE∩BD=KAE∩BD=K
⇒BK⇒BK vừa là phân giác vừa là đường cao
⇒BK⊥AE⇒BK⊥AE
Xét ΔAIDΔAID cân tại A có AK⊥IDAK⊥ID
⇒AK⇒AK vừa là đường cao vừa là đường phân giác
⇒AE⇒AE là tia phân giác ˆHACHAC^
d) ΔAIDΔAID cân tại A
⇒AI=AD⇒AI=AD
BD là phân giác của ˆABCABC^
⇒ABAC=ADDC=AIDC⇒ABAC=ADDC=AIDC
Để DC=2AI thì AIDC=ABAC=12⇒AC=2ABAIDC=ABAC=12⇒AC=2AB
a: \(\widehat{B}=\widehat{I}=\widehat{C}\)
nên ΔABC cân tại A
b: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao