\(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)với x,y,z dương và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi x=y=z

Với x=y=z thì a=b=c => tam giác ABC đều

26 tháng 10 2020

Cách khác :

Chu vi tam giác bằng 1 suy ra \(a+b+c=1\Rightarrow\hept{\begin{cases}1-a=b+c\\1-b=c+a\\1-c=a+b\end{cases}}\)

Nên đẳng thức viết lại thành: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)\(=\frac{3}{2}\)

Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy, áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel: 

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy tam giác ABC đều.

30 tháng 8 2016

Bằng nhau

30 tháng 8 2016

a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .

27 tháng 5 2019

1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0

theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :

2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )

\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

27 tháng 5 2019

Ta có a + b > c, b + c > a, a + c > b

Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

vậy ...

20 tháng 3 2016

ABC là tam giác cân

20 tháng 3 2016

ABC là tam giác cân

3 tháng 11 2017

Đặt b+c-a=x

c+a-b=y                           (x,y,z>0)

a+b-c=z

rồi rút a,b,c theo x,y,z.

AD Svacso 

18 tháng 5 2020

Đặt: x = b + c - a 

y = c + a - b 

z = a + b - c 

=> x + y + z = a + b + c = 2 

=> \(a=\frac{y+z}{2}\)\(b=\frac{x+z}{2}\)\(c=\frac{x+y}{2}\)

=> \(S=\frac{1}{2}\left(\frac{y+z}{x}+\frac{4z+4x}{y}+\frac{9x+9y}{z}\right)\)

\(=\frac{1}{2}\left(\frac{2-x}{x}+\frac{8-4y}{y}+\frac{18-9z}{z}\right)\)

\(=\frac{1}{x}+\frac{4}{y}+\frac{9}{z}-7\ge\frac{\left(1+2+3\right)^2}{x+y+z}-7=11\)

Dấu "=" xảy ra <=> \(\frac{1}{x}=\frac{2}{y}=\frac{3}{z}=\frac{1+2+3}{x+y+z}=3\)

=> x = 1/3; y = 2/3; z = 1 

=> a = 5/6; b = 2/3; c = 1/2

Vậy min S = 11 đạt tại  a = 5/6; b = 2/3 ; c = 1/2

6 tháng 3 2016

áp dụng BĐT 1/x+1/y>=4/x+y ấy