K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

bạn xem có sai đề ko

24 tháng 6 2018

góc C=90

3 tháng 10 2021

Áp dụng Pytago: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)

Ta có \(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\approx\sin37^0\Leftrightarrow\widehat{ACB}\approx37^0\)

3 tháng 10 2021

nhầm chỗ HTL nhé

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH\cdot BC=AC\cdot AB\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\AH=\dfrac{AC\cdot AB}{BC}=4,8\left(cm\right)\end{matrix}\right.\)

31 tháng 10 2021

AD,AE là j

31 tháng 10 2021

c: Xét ΔABH vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

8 tháng 10 2021

a) Xét tam giác ABC có:

\(\left\{{}\begin{matrix}AB^2+AC^2=9^2+12^2=225\\BC^2=15^2=225\end{matrix}\right.\)

\(\Rightarrow AB^2+AC^2=BC^2\)

=> Tam giác ABC vuông tại A(Pytago đảo)

b) Áp dụng tslg trong tam giác ABC vuông tại A:

\(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\\sinB=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\widehat{C}\approx37^0\\\widehat{B}\approx53^0\end{matrix}\right.\)

c) Áp dụng HTL:

\(AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)

\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6\left(cm\right)\end{matrix}\right.\)

8 tháng 10 2021

Xét tam giác ABC vuông tại A có Ah đường cao

\(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)

\(\Rightarrow AB^2=BH.BC\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\)

\(\Rightarrow HC=BC-BH=15-5,4=9,6\left(cm\right)\)

16 tháng 7 2021

tam giác ABC vuông tại A nên áp dụng Py-ta-go 

\(\Rightarrow BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

b) Kẻ HE,HF vuông góc với AB,AC chớ,chứ ko có điểm I

Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật

\(\Rightarrow EF=AH\)

tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow EA.EB=EH^2\)

tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow FA.FC=HF^2\Rightarrow EA.EB+FA.FC=EH^2+FH^2=EF^2=AH^2\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=HB.HC\Rightarrow HB.HC=EA.EB+FA.FC\)

 

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBA vuông tại C có CH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}CH^2=HA\cdot HB\\CA^2=HA\cdot AB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=6\left(cm\right)\\CA=2\sqrt{13}\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHA vuông tại H có HE là đường cao ứng với cạnh huyền CA, ta được:

\(CE\cdot CA=CH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHB vuông tại H có HF là đường cao ứng với cạnh huyền CB, ta được:

\(CF\cdot CB=CH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(CE\cdot CA=CF\cdot CB\)

hay \(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)

Xét ΔCEF vuông tại C và ΔCBA vuông tại A có 

\(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)

Do đó: ΔCEF\(\sim\)ΔCBA

20 tháng 10 2023

1: ΔABC vuông tại A 

nên ΔABC nội tiếp đường tròn đường kính BC

=>O là trung điểm của BC

ΔOAD cân tại O

mà OI là đường cao

nên I là trung điểm của AD

Xét ΔABC vuông tại A có AI là đường cao

nên \(IA^2=IB\cdot IC\)

=>\(IA\cdot ID=IB\cdot IC\)

2:

a: AB=AC

OB=OC

Do đó: AO là đường trung trực của BC

=>AO vuông góc BC tại trung điểm của BC

=>AO vuông góc BC tại H và H là trung điểm của BC

b: Xét (O) có

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{BOC}=2\cdot\widehat{BAC}=120^0\)

ΔOBC cân tại O

mà OH là đường cao

nên OH là phân giác của góc BOC

=>\(\widehat{BOH}=\dfrac{120^0}{2}=60^0\)

c: Xét ΔAHB vuông tại H có

\(sinB=\dfrac{AH}{AB}\)

=>\(\dfrac{6}{AB}=\dfrac{\sqrt{3}}{2}\)

=>\(AB=4\sqrt{3}\left(cm\right)\)

=>\(BC=4\sqrt{3}\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot4\sqrt{3}=12\sqrt{3}\left(cm^2\right)\)

a: CH=16^2/25=10,24cm

BC=25+10,24=35,24cm

AB=căn 16^2+25^2=căn 881(cm)

b: AH=căn 12^2-6^2=6căn 3cm

CH=AH^2/HB=108/6=18cm

BC=6+18=24cm

c: BC=căn 5^2+25^2=5 căn 26cm

BH=5^2/5căn 26=5/căn 26(cm)

CH=5căn 26-5/căn 26=24,51(cm)

d: AB=căn 16^2-14^2=2căn15(cm)

e: AB=căn 2*8=4cm

AC=căn 6*8=4căn 3(cm)

30 tháng 9 2021

bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=152+202=625
  BC=25cm
* AH.BC=AB.AC
  AH.25=15.20
  AH.25=300
  AH=12cm

30 tháng 9 2021

tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
 AC2=252-152=400
 AC=20cm