Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
45 C B A D M N O 45 O X a b x
Từ D, kẻ DM, DN vuông góc CA và CB.
Khi đo ta dễ thấy DMCN là hình vuông. Vậy thì đặt DM = MC = CN = ND = x.
Áp dụng định lý Talet ta có:
\(\frac{DM}{BC}=\frac{MA}{AC}\Rightarrow\frac{x}{a}=\frac{b-x}{b}\Rightarrow xb=ab-xa\Rightarrow x\left(a+b\right)=ab\)
\(\Rightarrow x=\frac{ab}{a+b}\).
Lại có \(CD=x\sqrt{2}=\frac{ab}{\left(a+b\right)sin45^o}.\)
Cô nghĩ như thế này mới đúng.
?o?n th?ng j_1: ?o?n th?ng [A, B] ?o?n th?ng k_1: ?o?n th?ng [B, C] ?o?n th?ng l_1: ?o?n th?ng [A, C] ?o?n th?ng r_1: ?o?n th?ng [A, M] ?o?n th?ng s_1: ?o?n th?ng [A, D] ?o?n th?ng t_1: ?o?n th?ng [A, N] ?o?n th?ng e_1: ?o?n th?ng [E, M] ?o?n th?ng f_2: ?o?n th?ng [P, N] ?o?n th?ng g_2: ?o?n th?ng [F, M] ?o?n th?ng h_2: ?o?n th?ng [Q, N] ?o?n th?ng i_2: ?o?n th?ng [P, Q] ?o?n th?ng j_2: ?o?n th?ng [F, E] ?o?n th?ng k_2: ?o?n th?ng [P, F] A = (-13.33, -6.93) A = (-13.33, -6.93) A = (-13.33, -6.93) B = (-16.03, -13.14) B = (-16.03, -13.14) B = (-16.03, -13.14) C = (-5.8, -13.23) C = (-5.8, -13.23) C = (-5.8, -13.23) ?i?m D: Giao ?i?m c?a m_1, k_1 ?i?m D: Giao ?i?m c?a m_1, k_1 ?i?m D: Giao ?i?m c?a m_1, k_1 ?i?m M: ?i?m tr�n k_1 ?i?m M: ?i?m tr�n k_1 ?i?m M: ?i?m tr�n k_1 ?i?m N: Giao ?i?m c?a k_1, q_1 ?i?m N: Giao ?i?m c?a k_1, q_1 ?i?m N: Giao ?i?m c?a k_1, q_1 ?i?m E: Giao ?i?m c?a a_1, j_1 ?i?m E: Giao ?i?m c?a a_1, j_1 ?i?m E: Giao ?i?m c?a a_1, j_1 ?i?m P: Giao ?i?m c?a c_1, j_1 ?i?m P: Giao ?i?m c?a c_1, j_1 ?i?m P: Giao ?i?m c?a c_1, j_1 ?i?m F: Giao ?i?m c?a b_1, l_1 ?i?m F: Giao ?i?m c?a b_1, l_1 ?i?m F: Giao ?i?m c?a b_1, l_1 ?i?m Q: Giao ?i?m c?a d_1, l_1 ?i?m Q: Giao ?i?m c?a d_1, l_1 ?i?m Q: Giao ?i?m c?a d_1, l_1 TenVanBan1 = "S_1" TenVanBan1 = "S_1" TenVanBan2 = "S_2" TenVanBan2 = "S_2" I J
a. Ta có AD là phân giác góc BAC; AD cũng là phân giác góc MAN nên \(\widehat{BAM}=\widehat{CAN.}\)
Vậy thì \(\widehat{PAN}=\widehat{FAM}\) (Vì cùng bằng \(\widehat{BAC}-\widehat{NAC}=\widehat{BAC}-\widehat{MAB}\) )
Từ đó suy ra \(\Delta PAN\sim\Delta FAM\left(g-g\right)\Rightarrow\widehat{PNA}=\widehat{FMA}\left(1\right)\)
Ta thấy \(\widehat{APN}=\widehat{AQN}=90^o\Rightarrow\)P, A,Q, N cùng thuộc một đường tròn. Vậy \(\widehat{PNA}=\widehat{PQA}\left(2\right)\)
Tương tự \(\widehat{FMA}=\widehat{FEA}\left(3\right)\)
Từ (1); (2); (3) suy ra \(\widehat{PQF}=\widehat{PEF}\) hay tứ giác PEQF là tứ giác nội tiếp. Vậy P, E, Q, F cùng thuộc một đường tròn.
b. Gọi I, J là hình chiếu của D trên AB và AC. Khi đó ta thấy ngay DI = DJ.
Ta có: \(\frac{NC}{DC}=\frac{NQ}{DJ};\frac{BM}{BD}=\frac{EM}{DI}\Rightarrow\frac{NC}{CD}.\frac{BD}{BM}=\frac{NQ}{EM}\Rightarrow\frac{CN}{BM}.\frac{BD}{CD}=\frac{NQ}{EM}\)
\(\Rightarrow\frac{CN}{BM}.\frac{AB}{AC}=\frac{NQ}{EM}\)
\(\frac{BD}{BN}=\frac{DI}{NP};\frac{CD}{CM}=\frac{DJ}{MF}\Rightarrow\frac{CM}{BN}.\frac{AB}{AC}=\frac{MF}{NP}\)
\(\Rightarrow\frac{AB^2.CM.CN}{AC^2.BM.BN}=\frac{NQ}{EM}.\frac{MF}{NP}\)
Lại có \(\Delta PNQ\sim\Delta FME\left(g-g\right)\Rightarrow\frac{NQ}{ME}=\frac{PN}{MF}\Rightarrow\frac{NQ}{ME}.\frac{MF}{PN}=1\)
\(\Rightarrow\frac{AB^2.CM.CN}{AC^2.BM.BN}=1\Rightarrow\frac{AB^2}{AC^2}=\frac{BM.BN}{CM.CN}.\)
Tự vẽ hình nha
c) AE là tia phân giác của góc CAB => sđcEC=sđcEB=> EC=EB=> OE vuông góc vs BC
Góc OAE= góc OEA(1)
OE song song vs AH (cùng vuông góc vs BC)=> OEA=EAH(2)
Từ (1) và (2) => góc OAE= góc EAH => AE là tia phân giác của góc OAH