\(\overrightarrow{v}=3\overrightarro...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 11 2019

\(\overrightarrow{v}=3\overrightarrow{MA}-5\left(\overrightarrow{MA}+\overrightarrow{AB}\right)+2\left(\overrightarrow{MA}+\overrightarrow{AC}\right)\)

\(\overrightarrow{v}=2\overrightarrow{AC}-5\overrightarrow{AB}\)

\(\Rightarrow\left|\overrightarrow{v}\right|=\left|2\overrightarrow{AC}-5\overrightarrow{AB}\right|\) ko phụ thuộc vị trí của M

\(\left|v\right|^2=4AC^2+25AB^2-20AB.AC.cos60^0=...\)

17 tháng 5 2017

\(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{CM}\)
\(=\left(\overrightarrow{CM}+\overrightarrow{MA}\right)+\left(\overrightarrow{CM}+\overrightarrow{MB}\right)=\overrightarrow{CA}+\overrightarrow{CB}\) (Không phụ thuộc vào vị trí điểm M).
A B C I K
b) Dựng hình bình hành BCAD. Theo quy tắc hình bình hành:
\(\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CD}\).
Vậy \(\overrightarrow{CD}=\overrightarrow{v}\).

6 tháng 8 2017

\(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\)

\(=2\overrightarrow{ME}-2\overrightarrow{MC}\) (E là trung điểm cạnh AB)

\(=\left(\overrightarrow{ME}-MC\right)=2\overrightarrow{CE}\)

vậy \(\overrightarrow{v}\) không phụ thuộc vị trí của điểm M

\(\overrightarrow{CD}=\overrightarrow{v}=2\overrightarrow{CE}\) thì E là trung điểm của CD

\(\Rightarrow\) ta dựng được điểm D

13 tháng 4 2017

\(\overrightarrow{u}=3\overrightarrow{MA}-5\overrightarrow{MB}+2\overrightarrow{MC}=3\left(\overrightarrow{MA}-\overrightarrow{MB}\right)+2\left(\overrightarrow{MC}-\overrightarrow{MB}\right)\)
\(=3\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+2\left(\overrightarrow{MC}+\overrightarrow{BM}\right)=3\overrightarrow{BA}+2\overrightarrow{BC}\) (không phụ thuộc vào vị trí điểm M).

15 tháng 10 2019
https://i.imgur.com/v6oVK6x.jpg
21 tháng 7 2019
https://i.imgur.com/bsF4RGI.jpg