K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)

Xét (O) có 

\(\widehat{AMB}\) và \(\widehat{ANB}\) là các góc nội tiếp chắn nửa đường tròn

nên \(\widehat{AMB}=90^0;\widehat{ANB}=90^0\)

Xét ΔAMB vuông tại M và ΔBNA vuông tại N có 

BC chung

\(\widehat{MAB}=\widehat{NBA}\)(ΔABC cân tại C)

Do đó: ΔAMB=ΔBNA(cạnh huyền-góc nhọn)

Suy ra: AM=BN(hai cạnh tương ứng)

b) Ta có: CM+AM=CA(M nằm giữa C và A)

CN+NB=CB(N nằm giữa C và B)

mà CA=CB(ΔCBA cân tại C)

và AM=BN(cmt)

nên CM=CN

Ta có: CM=CN(cmt)

nên C nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OM=ON(=R)

nên O nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OC là đường trung trực của MN

28 tháng 6 2021

bn có thể chứng minh đc góc AMB=ANB=90 độ bằng cách khác đc ko

 

10 tháng 6 2019

Em không vẽ được hình, xin thông cảm

a, Ta có góc EAN=  cungEN=cung EC+ cung EN

Mà cung EC= cung EB(E là điểm chính giữa cung BC)

=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)

=> tam giác AEN đồng dạng tam giác FED

Vậy tam giác AEN đồng dạng tam giác FED

b,Ta có EC=EB=EM

Tam giác EMC cân tại E => EMC=ECM

 MÀ EMC+AME=180, ECM+ABE=180

=> AME = ABE

=> tam giác ABE= tam giác AME

=> AB=AM => tam giác ABM cân tại A

Mà AE là phân giác => AE vuông góc BM

CMTT => AC vuông góc EN

MÀ AC giao BM tại M

=> M là trực tâm tam giác AEN

Vậy M là trực tâm tam giác AEN

c,  Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH

Vì M là trực tâm của tam giác AEN

=> \(EN\perp AN\)

Mà \(OI\perp AN\)(vì I là trung điểm của AC)

=> \(EN//OI\)

MÀ O là trung điểm của EH

=> I là trung điểm của MH (đường trung bình trong tam giác )

=> tứ giác AMNH là hình bình hành 

=> AH=MN

Mà MN=NC

=> AH=NC

=> cung AH= cung NC

=> cung AH + cung KC= cung KN

Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )

NBK là góc nội tiếp chắn cung KN

=> gócKMC=gócKBN

Hay gócKMC=gócKBM

=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)

Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK

10 tháng 6 2019

Anh Khang nè,e cung cấp hình nha:3

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)AC tại D

Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại I

b: Ta có: \(\widehat{AMO}=\widehat{ANO}=\widehat{AIO}\)

=>A,M,I,O,N cùng thuộc đường tròn đường kính AO

Gọi I là trung điểm của AO

=>A,M,I,O,N cùng thuộc (I)

Xét (O) có

AM,AN là các tiếp tuyến

Do đó: OA là phân giác của góc MON

=>\(\widehat{MOA}=\widehat{NOA}\)

Xét (I) có

\(\widehat{MOA}\) là góc nội tiếp chắn cung MA

\(\widehat{NOA}\) là góc nội tiếp chắn cung NA

\(\widehat{MOA}=\widehat{NOA}\)

Do đó: \(sđ\stackrel\frown{MA}=sđ\stackrel\frown{NA}\)

Xét (I) có

\(\widehat{MIA}\) là góc nội tiếp chắn cung MA

\(\widehat{NIA}\) là góc nội tiếp chắn cung NA

\(sđ\stackrel\frown{MA}=sđ\stackrel\frown{NA}\left(cmt\right)\)

Do đó: \(\widehat{MIA}=\widehat{NIA}\)

=>IA là phân giác của góc MIN

a: góc AMO=góc AFO=góc ANO=90 độ

=>A,M,F,O,N cùng thuộc 1 đường tròn

b: Gọi I là giao của MN với AO

=>I là trung điểm của MN

AI*AO=AM^2

Xét ΔAMH và ΔAFM có

góc AMH=góc AFM

góc MAH chung

=>ΔAMH đồng dạng với ΔAFM

=>AH*AF=AI*AO

=>góc AHI=góc AOF

=>OFHI nội tiếp

=>M,N,H thẳng hàng

2 tháng 2 2022

bài này mới chữa trên lớp =))

2 tháng 2 2022

r làm đi =)

1 tháng 7 2019

4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.

Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác  B D C ^

Ta có  K Q C ^ = 2 K M C ^  (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))

N D C ^ = K M C ^  (góc nội tiếp cùng chắn cung  N C ⏜ )

Mà  B D C ^ = 2 N D C   ^ ⇒ K Q C ^ = B D C ^

Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở  ⇒ B C D ^ = B C Q ^  do vậy D, Q, C thẳng hàng nên KQ//PK

Chứng minh tương tự ta có  ta có D, P, B thẳng hàng và DQ//PK

Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).