K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

a: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB<AC

nên BD<CD

b: AB<AC
=>góc B>góc C

góc ADB=góc C+góc CAD

góc ADC=góc B+góc BAD

mà góc C<góc B và góc CAD=góc BAD

nên góc ADB<góc ADC

20 tháng 8 2018

Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều 
=> BM=CM => M thuộc trung trực cua BC 
Lại có : AB=AC(ABC can tai A) 
=> A thuộc trung trực cua BC 
Do đó : AM là trung trực của BC 
=> AM là phân giác góc BAC 
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ 
tam giac ABC can tai A 
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ 
lai co : goc MCA = goc ACB - goc MCB 
goc MCB = 60 độ (Tg BCM đều) 
Suy ra : goc MCA = 20 độ 
Xet tg CMA va tg ADC co: 
AC chung 
CM=DA (cung bang BC) 
goc MCA = goc DAC (= 20 độ) 
=> tg CMA = tg ADC ( c.g.c) 
=> goc CDA = goc CMA = 150 độ 
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu) 
suy ra : goc BDC = 30 độ 

Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều 
=> BM=CM => M thuộc trung trực cua BC 
Lại có : AB=AC(ABC can tai A) 
=> A thuộc trung trực cua BC 
Do đó : AM là trung trực của BC 
=> AM là phân giác góc BAC 
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ 
tam giac ABC can tai A 
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ 
lai co : goc MCA = goc ACB - goc MCB 
goc MCB = 60 độ (Tg BCM đều) 
Suy ra : goc MCA = 20 độ 
Xet tg CMA va tg ADC co: 
AC chung 
CM=DA (cung bang BC) 
goc MCA = goc DAC (= 20 độ) 
=> tg CMA = tg ADC ( c.g.c) 
=> goc CDA = goc CMA = 150 độ 
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu) 
suy ra : goc BDC = 30 độ