K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2021

\(a,\left\{{}\begin{matrix}\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC};\widehat{C_1}=\widehat{C_2}=\dfrac{1}{2}\widehat{ACB}\\\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân.tại.A\right)\end{matrix}\right.\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\\ \left\{{}\begin{matrix}\widehat{B_1}=\widehat{C_1}\\AB=AC\\\widehat{A}\end{matrix}\right.\Rightarrow\Delta AEB=\Delta AFC\left(g.c.g\right)\Rightarrow AE=AF\\ \Rightarrow\Delta AEF.cân\)

\(b,\left\{{}\begin{matrix}AE=AF\\AB=AC\end{matrix}\right.\Rightarrow AB-AF=AC-AE\Rightarrow BF=CE\\ \left\{{}\begin{matrix}BF=CE\\\widehat{ABC}=\widehat{ACB}\\BC.chung\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(c.g.c\right)\)

\(c,\widehat{AFE}=\dfrac{180^0-\widehat{A}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{AFE}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BFCE\) là hthang

Mà \(\widehat{ABC}=\widehat{ACB}\) nên BFCE là hthang cân

24 tháng 9 2021

a) Ta có tam giác ABC cân tại A

=> góc B= góc C

=> 1/2 góc C= 1/2 góc B

=> ABE=ACF

Xét tam giác ABE và tam giác AFC có:

AB=AC(gt)

A(chung)

ABE=ACF(cmt)

=> tam giac ABE= tam giác ACF(g.c.g)

=> AF=AE

=> tam giác AEF cân tại A

b)Ta có góc B= góc C

=> 1/2 góc B=1/2 góc C=>EBC=FCB

Theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)

=> BE=CF

Xét tam giác BFC vá tam giác CEB có

BE=CF(tam giác ABE= tam giác ACF)

FCB=ECB(cmt)

BC(chung)

=> tam giác BFC= tam giác CEB(c.g.c0

c) Tam giác AFE cân tại A

=>góc AFE=(180*-A)/2

Tam giác ABC cân tại B=>ABC=(180*-A)/2

=> ABC=AFE

=> FE//BC(1)

Ta có: FB=AB-AF

          EC=AC-AE

          AB=AC

        AF=AE

=> FB=EC(2)

Từ (1)(2)=> tứ giác BFEC là hình thang cân

15 tháng 9 2021

giup minh nha, minh can gapkhocroi

15 tháng 9 2021

\(7,\)

\(a,\left\{{}\begin{matrix}AB=AC\left(\Delta ABC.cân\right)\\\widehat{B_1}=\widehat{C_1}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AFC=\Delta AEB\left(g.c.g\right)\\ \Rightarrow AF=AE\Rightarrow\Delta AFE.cân.tại.A\)

\(b,\left\{{}\begin{matrix}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\BC.chung\\\widehat{B_2}=\widehat{C_2}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(g.c.g\right)\)

\(c,\widehat{F_1}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{F_1}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BEFC\) là hình thang

Mà \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)

Vậy \(BEFC\) là hình thang cân

 

 

31 tháng 7 2021

a) Ta có tam giác ABC cân tại A

=> góc B= góc C

=> 1/2 góc C= 1/2 góc B

=> ABE=ACF

Xét tam giác ABE và tam giác AFC có:

AB=AC(gt)

A(chung)

ABE=ACF(cmt)

=> tam giac ABE= tam giác ACF(g.c.g)

=> AF=AE

=> tam giác AEF cân tại A

b)Ta có góc B= góc C

=> 1/2 góc B=1/2 góc C=>EBC=FCB

Theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)

=> BE=CF

Xét tam giác BFC vá tam giác CEB có

BE=CF(tam giác ABE= tam giác ACF)

FCB=ECB(cmt)

BC(chung)

=> tam giác BFC= tam giác CEB(c.g.c0

c) Tam giác AFE cân tại A

=>góc AFE=(180*-A)/2

Tam giác ABC cân tại B=>ABC=(180*-A)/2

=> ABC=AFE

=> FE//BC(1)

Ta có: FB=AB-AF

          EC=AC-AE

          AB=AC

        AF=AE

=> FB=EC(2)

Từ (1)(2)=> tứ giác BFEC là hình thang cân

13 tháng 7 2022

ve~ hinh` di a

 

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

góc EBC=góc DCB

=>ΔEBC=ΔDCB

b: Xét ΔKEB vuông tại E và ΔKDC vuông tại D có

EB=DC

góc KBE=góc KCD

=>ΔKEB=ΔKDC

c: Xét ΔAEK vuông tại E và ΔADK vuông tại D có

AK chung

KE=KD

=>ΔAEK=ΔADK

=>góc EAK=góc DAK

=>AK là phân giác của góc BAC

d: ΔABC cân tại A có AK là phân giác

nên AK là trung trực của BC

=>A,K,I thẳng hàng

31 tháng 7 2016

a) ta có tam giác ABC cân tại A

=> góc B= góc C

=> 1/2 góc C= 1/2 góc B

=> ABE=ACF

xét tam giác ABE và tam giác AFC có:

AB=AC(gt)

A(chung)

ABE=ACF(cmt)

=> tam giac ABE= tam giác ACF(g.c.g)

=> AF=AE

=> tam giác AEF cân tại A

b)

ta có góc B= góc C

=> 1/2 góc B=1/2 góc C=>EBC=FCB

theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)

=> BE=CF

xét tam giác BFC vá tam giác CEB có

BE=CF(tam giác ABE= tam giác ACF)

FCB=ECB(cmt)

BC(chung)

=> tam giác BFC= tam giác CEB(c.g.c0

c)

tam giác AFE cân tại A

=>góc AFE=(180*-A)/2

tam giác ABC cân tại B=>ABC=(180*-A)/2

=> ABC=AFE

=> FE//BC(1)

ta có: FB=AB-AF

          EC=AC-AE

          AB=AC

        AF=AE

=> FB=EC(2)

từ (1)(2)=> tứ giác BFEC là hình thang cân

31 tháng 7 2016

a,Có:Trong tam giác cân,đường phân giác ứng với cạnh đáy đồng thời cũng là đường cao
=>Trong tam giác cân ABC,đường phân giác BE,CF ứng với cạnh đáy đồng thời cũng là đường cao
=>BE là đường cao của tam giác BCA(BE\(\perp\)AC)
     CF là đường cao của tam giác CAB(CF\(\perp\)AB)
Xét tam giác ABE và tam giác ACF có:
     góc AEB=góc AFC=90*(cmt)
     AB=AC(tam giác ABC cân tại A)
     góc A chung
=>tam giác ABE=tam giác ACF(cạnh huyền-góc nhọn)
=>AE=AF(2 cạnh tương ứng)
=>tam giác AEF cân  tại A
b,Có:tam giác ABC cân tại A
=>góc ABC=góc ACB
=>\(\frac{1}{2}ABC=\frac{1}{2}ACB\)
=>góc EBC=góc FCB(BE,CF là tia phân giác của góc B và C)
 Xét tam giác BFC và tam giác CEB có:
   góc CFB =góc BEC=90*(cmt)
   BE=CF(tam giác ABE=tam giác ACF)
   góc EBC=góc FCB(cmt)
=>tam giác BFC=tam giác CEB(cạnh huyền-góc nhọn)
c,Có: tam giác AEF cân tại A(chứng minh câu a)
=>góc AEF=(180*-góc A)/2(1)
Có: tam giác ABC cân tại A(gt)
=>góc ACB=(180*-góc A)/2(2)

Từ (1) và (2)=>góc AEF=góc ACB(=(180*-góc A)/2)
Mà hai góc này ở vị trí đồng vị
=>EF//BC
=>BFEC là hình thang(3)
mà CF=BE(tam giác ABE=tam giác ACF)(4)
Từ (3) và (4)=>Tứ giác BFEC là hình thang cân 

 

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b: ΔABD=ΔACE

=>góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC