K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020
https://i.imgur.com/V4RBGXV.jpg
23 tháng 4 2018

A B C H K a,\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)

Xét \(\Delta ABM\)\(\Delta ACM\) có :

AB=AC (gt)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

BM=MC(gt)

Suy ra: \(\Delta ABM\) = \(\Delta ACM\)(c.g.c)

b,Xét \(\Delta\)HMB và \(\Delta\)KMC có:

\(\widehat{H}=\widehat{K}\left(=90^o\right)\)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

BM=MC(gt)

Suy ra : \(\Delta\)HMB = \(\Delta\)KMC(ch-gn)

=>BH = CK (2 cạnh tương ứng)

Trả lời:

P/s: Học kém Hình nên chỉ đucợ mỗi câu a

a,  +Xét tam giác ABM và ACM có:
  AB=AC(Giả thiết)  --
  AM là cạnh chung)  I  =>tam giác ABM=ACM (C-C-C)

                                     ~Học tốt!~

19 tháng 4 2016

a)

xét tam giác ABM và tam giác ACM có:
AB=AC(gt)

MB=MC(gt)

B=C(gt)

suy ra tam giác ABM=ACM(c.g.c)

b)

xét 2 tam giác vuông AHC và AKB có:

AB=AC(gt)

A(chung)
suy ra tam giác AHB=AKB(CH-GN)

suy ra AH=AK

AB=AC

BH=AB=AH

CK=AC-AK

từ tất cả nh điều trên suy ra BH=CK

c)

xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)

suy ra tam giác KBC=ACB(c.g.c)

suy ra KBC=HCB suy ra tam giác IBC cân tại I

19 tháng 4 2016

A B C H K I

10 tháng 5 2015

bn **** rồi mik làm mik ko nuốt lời đâu

a) Xét tam giác ABM và tam giác ACM

AB=AC(tam giác ABC cân)

góc B=góc C( tam giác ABC cân)

BM=CM(M là trung điểm của BC)

=>tam giác ABM=tam giác ACM(c.g.c)

bn **** mik làm nốt câu b và c

17 tháng 4 2016

Thực hiện phép tính A = 

\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).....\left(1-\frac{1}{1+2+3+.....+2016}\right)\)

\(\)

18 tháng 3 2021

a/

Xét tg ABM và tg ACM có

MB=MC (đề bài)

AB=AC (Do tg ABC cân tại A)

\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)

=> tg ABM=tg ACM (c.g.c)

Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)

b/

Xét tg vuông BME và tg vuông CMF có

MB=MC

\(\widehat{ABC}=\widehat{ACB}\)

=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M

c/

Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)

\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )

=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\)  (Trong tg can EMF đường phân giác đồng thời là đường cao)

Mà \(AM\perp BC\)

=> EF//BC (cùng vuông góc với AM)