Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMO vuông tại M và ΔANO vuông tại N có
AO chung
AM=AN
Do đó: ΔAMO=ΔANO
=>góc MAO=góc NAO
=>AO là phân giác của góc MAN
b: OB=OA
OA=OC
Do đó: OB=OC
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a) Xét \(\Delta ADB\)và \(\Delta ADC\)có:
\(AB=AC\left(gt\right)\)
\(BD=DC\)( D là trung điểm của BC )
AD là cạnh chung
\(\Rightarrow\Delta ADB=\Delta ADC\left(c.c.c\right)\)
b) Vì \(\Delta ADB=\Delta ADC\left(cmt\right)\)
\(\Rightarrow\widehat{BAD}=\widehat{CAD}\)( 2 góc tương ứng )
=> AD là tia phân giác \(\widehat{BAC}\)
c) Vì \(\Delta ADB=\Delta ADC\left(cmt\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}\)( 2 góc tương ứng )
Vì \(\widehat{D_1}+\widehat{D_2}=180^0\)( 2 góc kề bù )
\(\Rightarrow\widehat{D_1}=\widehat{D_2}=\frac{180^0}{2}=90^0\)
\(\Rightarrow AD\perp BC\)
a , Xét Δ\(ADB\) và Δ\(ADC\) có:
\(AD\) là cạnh chung
\(A1=A2\) ( GT )
\(AB=AC\) ( GT )
⇒Δ\(ADB\)=Δ\(ADC\) ( c.g.c )
b , Vì : Δ\(ADB\)=Δ\(ADC\) ( chứng mính ý a )
⇒ \(B=C\) ( 2 góc tương ứng )
c , Vì : Δ\(ABC\) cân tại \(A\) mà \(AD\) là phân giác góc \(BAC\)
⇒ \(AD\) là đường cao ⇒ \(AD\perp BC\)
a: Sửa đề: Chứng minh ΔABD=ΔAMD
Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM
=>ΔDBM cân tại D
c: Ta có: DB=DM
=>D nằm trên đường trung trực của BM(1)
ta có: AB=AM
=>A nằm trên đường trung trực của BM(2)
Từ (1),(2) suy ra AD là đường trung trực của BM
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM
=>ΔDBM cân tại D
c: Ta có: AB=AM
=>A nằm trên đường trung trực của BM(1)
ta có: DB=DM
=>D nằm trên đường trung trực của BM(2)
Từ (1) và (2) suy ra AD là đường trung trực của BM
ta có:\(AD\)là tia phân giác của góc \(\widehat{BAC}\)
Mà \(\Delta ABC\)cân tại A
\(\Rightarrow\)\(AD\)là trung tuyến của\(\widehat{BAC}\)(trong \(\Delta\)cânđường phân giác đòng thời à đường trung tuyến ứng vs cạch đáy)
có thể ghi gọn hơn chỉ giải thik cho hỉu thui
Xét tam giác ABD và tam giác ADC ta có:
AD chung
AB=AC(tam giác ABC cân tại A)
Góc BAD=góc DAC(AD là phân giác của góc A)
=>Tam giác ABD=tam giác ADC(c.g.c)
=>BD=DC(cặp cạnh tương ứng)
Vì BD=DC(cmt)
=>D là trung điểm của BC
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xét ΔADH và ΔAEH có
AD=AE
góc HAD=góc HAE
AH chung
=>ΔADH=ΔAEH
c: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Tham khảo bài này nha bạn:
Cho tam giác ABC vuông cân tại A. M là trung điểm của BC.điểm E nằm giữa M và C. kẻ BH, CK vuông góc?
với AE (H,K thuộc AE ).
a. cm: BH=AK
b, tam giác MBH= tam giác MAK
c, tam giác MHK vuông cân.
a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
^H = ^C (= 90°)
AB = AC (T.g ABC vuông cân)
^ABH = ^CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>^HBM = ^MCK (SLT)(1)
Mặt khác ^MAE + ^AEM = 90°(2)
Và ^MCK + ^CEK = 90°(3)
Nhưng ^AEM = ^CEK (đ đ)(4)
Từ 2,3,4 => ^MAE = ^ECK (5)
Từ 1,5 => ^HBM = ^MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét ▲MBH và ▲MAK có:
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c)
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ
=> ^CMK + ^HMC = 90° hay ^HMK = 90°
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân
Ta có: ΔABC cân tại A
=> AB = AC
Xét ΔABD và ΔACD có
BD = CD
AD chung
AB = AC (cmt)
=> ΔABD = ΔACD (c - c - c)
=> Góc BAD = góc CAD
=> AD là phân giác của góc BAC
Vì tam giác ABC cân tại A nên =>AB=AC(t/c)
Vì D là trung điểm của BC nên=>BD=CD
Xét tam giác ABD và tam giác ACD, ta có:
AB=AC(cmt)
AD:cạnh chung
BD=CD(cmt)
=>Tam giác ABD=tam giác ACD(c.c.c)
=>Góc DAB=góc CAD(2 góc tương ứng)
=>AD là tia phân giác góc BAC