K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

\(\Delta ABC\) cân tại A nên \(\widehat{C}=\dfrac{180^0-\widehat{A}}{2}=30^0\)

\(\sin\widehat{C}=\sin30^0=\dfrac{BH}{BC}=\dfrac{1}{2}\Rightarrow BH=1\)

\(\widehat{HAB}+\widehat{BAC}=180^0\Rightarrow\widehat{HAB}=60^0\)

\(\tan\widehat{HAB}=\tan60^0=\dfrac{BH}{AH}=\sqrt{3}\Rightarrow AH=\dfrac{\sqrt{3}}{3}\)

28 tháng 7 2021

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow BH=\dfrac{AH^2}{CH}=\dfrac{144}{9}=16\)cm 

-> BC = CH + BH = 9 + 16 = 25 cm 

* Áp dụng hệ thức : \(AB^2=BH.BC=16.25=400\Rightarrow AB=20\)cm

Áp dụng đlí Pytago tam giác ABC vuông tại A 

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=625-400=225\)

=> AC = 15 cm 

28 tháng 7 2021

Xét tam giác AHC vuông tại H, theo định lý Py-ta-go ta có:

AC2 = AH2 + HC2 = 122 + 92 = 225

\(\Rightarrow\) AC = \(\sqrt{225}\) = 15 (cm)

Xét tam giác ABC vuông tại A, đường cao AH, theo hệ thức lượng trong tam giác vuông ta có:

AC2 = BC.HC

\(\Leftrightarrow\) BC = \(\dfrac{AC^2}{HC}\) = \(\dfrac{15^2}{9}\) = 25 (cm)

Xét tam giác ABC vuông tại A, theo định lý Py-ta-go ta có:

BC2 = AB2 + AC2 

\(\Leftrightarrow\) AB2 = BC2 - AC2 = 252 - 152 = 400

\(\Rightarrow\) AB = \(\sqrt{400}\) = 20 (cm)

Vậy ...

Chúc bn học tốt!

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{9}=\dfrac{1}{AB^2}+\dfrac{1}{25}\)

\(\Leftrightarrow\dfrac{1}{AB^2}=\dfrac{16}{225}\)

\(\Leftrightarrow AB=\dfrac{15}{4}\)

\(AH.BC=AB.AC\)

\(3.BC=\dfrac{15}{4}.5\)

\(BC=6,25\)

\(CH=\dfrac{AC^2}{BC}=4\)

=> BH = 6,25 - 4 = 2,25 

 

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

Đề 1: 

a: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay HB=18(cm)

Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên AC=40(cm)

b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)

Do đó: ΔAHC\(\sim\)ΔDHB

Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)

hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)

5 tháng 9 2017

a,1+15cm=.....

b,15+9+1+.....=.....

c.15*4+9+9+9+9=......