Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\)
hay HC=3,2(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=3\left(cm\right)\\AC=4\left(cm\right)\end{matrix}\right.\)
2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
\(\Delta ABC\) cân tại A nên \(\widehat{C}=\dfrac{180^0-\widehat{A}}{2}=30^0\)
\(\sin\widehat{C}=\sin30^0=\dfrac{BH}{BC}=\dfrac{1}{2}\Rightarrow BH=1\)
\(\widehat{HAB}+\widehat{BAC}=180^0\Rightarrow\widehat{HAB}=60^0\)
\(\tan\widehat{HAB}=\tan60^0=\dfrac{BH}{AH}=\sqrt{3}\Rightarrow AH=\dfrac{\sqrt{3}}{3}\)