K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2021

mai mik thi rồi mik cần gấp lắm giúp mik nha

 

a) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))

AH chung

Do đó: ΔABH=ΔACH(c-g-c)

12 tháng 8 2019

Vì tam giác ABC đều nên (BAC) ̂=60^0.

AI là tia phân giác của góc BAC nên (BAI) ̂=30^0. Chọn A

a: góc ABC=180-50-70=60 độ

b: Vì góc IBC=1/2*góc ABC

nên BI là phân giác của góc ABC

Vì góc ICB=1/2*góc ACB

nên CI là phân giác của góc ACB

c: Xét ΔBFI vuông tại F và ΔBDI vuông tại D có

BI chung

góc FBI=góc DBI

=>ΔBFI=ΔBDI

=>ID=IF
Xét ΔCDI vuông tại D và ΔCEI vuông tại E co

CI chung

góc DCI=góc ECI

=>ΔCDI=ΔCEI

=>ID=IE=IF

=>I là giao của 3 đường trung trực ΔDEF

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

b: \(\widehat{ABC}=\dfrac{180^0-30^0}{2}=75^0\)

c: Xét tứ giác AHCE có

D là trung điểm của AC

D là trung điểm của HE

Do đó: AHCE là hình bình hành

Suy ra: AH//CE

15 tháng 5 2021

b) Xét ΔADH và ΔCDE có

Góc ADH = Góc EDC ( đối đỉnh )

D là tđ của HE => HD=ED 

D là tđ của AC => AD=DC

=>ΔADH = ΔCDE (cgc)

=> góc DAH = góc ECD ( 2 góc tương ứng )

mà 2 góc trên ở vị trí so le trong 

=>HA// EC 

Xét ΔAHC có

 F là tđ của AH => CF là trung tuyến 

D là tđ của AC => HD là trung tuyến 

mà CF giao vs HD tại Q => Q là trọng tâm 

=> HQ=\(\dfrac{2}{3}\)HD

mà HD=DE (cmt)

=>HQ=\(\dfrac{HD+DE}{3}\)=\(\dfrac{1}{3}HE\)

thế là xong câu b rùi nhé còn còn a thì dễ r bạn tự làm đc hihi

10 tháng 9 2019

Câu hỏi của •Ƙ - ƔℌŤ⁀ᶦᵈᵒᶫ - Toán lớp 7 - Học toán với OnlineMath

10 tháng 9 2019

A B C I K

+) \(\Delta\)ABC cân => \(\hept{\begin{cases}AB=AC\left(1\right)\\\widehat{ABC}=\widehat{ACB}\end{cases}}\)

Ta có:  \(\widehat{BAC}=100^o\)=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}=40^o\)

\(\widehat{IBC}=\widehat{ABC}-\widehat{ABI}=40^o-10^o=30^o\)

\(\widehat{ACI}=\widehat{BCI}=\frac{\widehat{ACB}}{2}=\frac{40^o}{2}=20^o\)(i)

+) Trên nửa mặt phẳng bờ AC  chứa B lấy điểm K sao cho \(\Delta\)AKC đều => \(\hept{\begin{cases}\widehat{KAC}=\widehat{ACK}=\widehat{AKC}=60^o\\AK=KC=AC\left(2\right)\end{cases}}\)

=> \(\widehat{BAK}=\widehat{BAC}-\widehat{KAC}=100^o-60^o=40^o\)

Từ (1); (2) => AB=AK => \(\Delta\)ABK cân tại A => \(\widehat{ABK}=\widehat{AKB}=\frac{180^o-\widehat{BAK}}{2}=70^o\)

=> \(\widehat{KBC}=\widehat{ABK}-\widehat{ABC}=70^o-40^o=30^o\)

\(\widehat{KCB}=\widehat{KCA}-\widehat{ACB}=60^o-40^o=20^o\)

+) Xét \(\Delta\)BIC và \(\Delta\)BKC có:

\(\widehat{IBC}=\widehat{KBC}\left(=30^o\right)\)

BC chung

\(\widehat{ICB}=\widehat{KCB}\left(=20^o\right)\)

=>  \(\Delta\)BIC = \(\Delta\)BKC 

=> CK =CI (3)

(2); (3) => CI =CA =>  \(\Delta\)ACI cân tại C

b)   \(\Delta\)ACI cân tại C có: \(\widehat{ACI}=20^o\) (theo (i) )

=> \(\widehat{CIA}=\widehat{CAI}=\frac{180^o-\widehat{ACI}}{2}=80^o\)

=> \(\widehat{BAI}=\widehat{BAC}-\widehat{CAI}=100^o-80^o=20^o\)