K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.

Có BM = BC/2 = 6cm

Áp dụng định lí Pytago trong tam giác vuông ABM có:

AM2 = AB2 - BM2 = 102 - 62 = 64 ⇒ AM = 8m. Chọn C

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔABC cân tại A

mà AM là trung tuyến

nên AM là đường cao

BC=12cm nên BM=6cm

=>AM=8(cm)

c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác

=>AI là phân giác của góc BAC

mà AM là phân giác của góc BC

nên A,I,M thẳng hàng

a: ΔABC cân tại A có AM là trung tuyến

nên AM vuông góc BC

b: Xét ΔDBC có

BA là trung tuyến

BA=CD/2

=>ΔDBC vuông tại B

c: ΔABD cân tại A có AE là đường cao

nên E là trung điểm của BD

d: Xét ΔDBC có BE/BD=BM/BC

nên EM//DC

6 tháng 7 2023

loading...

loading...

15 tháng 6 2021

Áp dụng định lí Pytago:

`BC^2=AB^2+AC^2`

`<=>BC^2=3^2+4^2`

`<=>BC=5(cm)`

AM là đường trung tuyến của `\DeltaABC`

`=> AM = (BC)/2 = 5/2 (cm)`

21 tháng 8 2023

a) Để chứng minh AM vuông góc với BC, ta sử dụng tính chất của tam giác cân. Vì tam giác ABC cân tại A, nên ta có MA = MC. Vì M là trung điểm của BC, nên ta có MB = MC. Từ đó, ta có MA = MB. Giả sử ta kẻ đường thẳng AM. Vì MA = MB, nên đường thẳng AM là đường trung tuyến của tam giác ABC. Theo tính chất của đường trung tuyến, ta có AM song song và bằng một nửa đoạn thẳng BC. Do đó, AM vuông góc với BC. b) Vì tam giác ABC cân tại A, nên ta có góc BAC = góc BCA. Vì góc BAC = 40 độ, nên góc BCA = 40 độ. Vì tam giác ABC cân tại A, nên tổng hai góc B và góc C là 180 độ - góc BAC = 180 độ - 40 độ = 140 độ. Vì tam giác ABC là tam giác cân, nên góc B = góc C = (180 độ - 140 độ)/2 = 20 độ. Vậy góc B của tam giác ABC là 20 độ và góc C cũng là 20 độ. c) Để chứng minh AB // CD, ta sử dụng tính chất của đường trung tuyến. Vì N là trung điểm của đoạn thẳng BC, nên BN song song và bằng một nửa đoạn thẳng AC. Từ đó, ta có: BN = 1/2 AC. Giả sử ta kẻ đường thẳng CD. Vì NB = ND, nên ta có: 1/2 AC = NB = ND. Do đó, ta có AB // CD. Để chứng minh tam giác ACD cân, ta sử dụng tính chất của đường trung tuyến. Vì D là điểm trên đường trung tuyến BN, nên ta có: ND = 1/2 NB. Từ đó, ta có: ND = 1/2 NB = 1/2 AC. Vì NB = ND và AD là đoạn thẳng chứa đường trung tuyến BN, nên ta có: AD song song và bằng một nửa đoạn thẳng AC. Do đó, tam giác ACD cân. d) Để chứng minh BK = 1/3 BD, ta sử dụng tính chất của điểm giao nhau của hai đường trung tuyến. Vì K là giao điểm của AM và BN, nên ta có: AK = 2/3 AM và BK = 2/3 BN. Vì MA = MB (vì tam giác ABC cân tại A và M là trung điểm của BC), nên AM là đường trung tuyến của tam giác ABC. Từ đó, ta có: AM = 1/2 BC. Vì NB = ND (vì trên tia BN ta lấy điểm D sao cho NB = ND), nên BN cũng là đường trung tuyến của tam giác ABC. Từ đó, ta có: BN = 1/2 AC. Do đó, ta có: AM = 1/2 BC = 1/2 AC. Vì BN = 1/2 AC, nên ta có: BK = 2/3 BN = 2/3 * 1/2 AC = 1/3 AC. Vì AC = BD (vì tam giác ACD cân và D là điểm trên đường trung tuyến BN), nên ta có: BK = 1/3 BD. Vậy ta đã chứng minh BK = 1/3 BD.

a: ΔABC cân tại A có AM là đường trung tuyến

nên AM vuông góc BC

b: ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)

c: Xét tứ giác ABCD có

N là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB//CD và AB=CD

=>CD=CA

=>ΔCAD cân tại C

13 tháng 4 2019

help me > _ <

a,Áp dụng tính chất tổng ba góc trong 1 tam giác vào  \(\Delta ABC\),có:

           \(180^o=\widehat{A}+\widehat{B}+\widehat{C}\)

\(\Rightarrow\widehat{C}=180^o-(\widehat{A}+\widehat{B})\)

            \(=180^o-140^o\)

              \(=40^o\)

Vậy \(\widehat{C}=40^o\)

b,Vì \(\widehat{A}>\widehat{B}=\widehat{C}\left(100^o>40^o=40^o\right)\)

\(\Rightarrow BC>AC=AB\)(Quan hệ giữa góc và cạnh đối diện )

Vậy BC là cạnh lớn nhất của tam giác ABC

c, Vì G là trọng tâm của tam giác ABC 

\(\Rightarrow AG=\frac{2}{3}AM\)

\(\Rightarrow AM=AG:\frac{2}{3}\)

\(\Rightarrow AM=8.\frac{3}{2}\)

\(\Rightarrow AM=12\left(cm\right)\)

Vậy AM=12 cm

k mik nha !

sorry mik vẽ hình ko đc chuẩn lắm thông cảm nha

23 tháng 3 2016

Áp dụng định lý hàm số COS ta có: 
AC^2 = AB^2+AC^2 - 2AB.AC.cosB 
= 12^2 + 6^2 -2.12.6.(-1/2) = 252 ------> AC = CĂN 252 
Vì BD là phân giác của góc B nên theo tính chất ta có: 
AD/AC =AB/BC = 6/12 = 1/2 
----> DC = 2 AD , mà AC = CĂN 252 ------> AD= 1/3 căn 252 
Áp dụng định lý hàm số COS đồi với tam giác ABD có: 
AD^2=AB^2+BD^2 - 2AB.BD.cosB 
<=>(1/3 căn 252)^2= 6^2+ BD^2 - 2.6.BD.(1/2) 
<=> BD^2 - 6BD + 8 =0 
<=> BD = 4 hoặc BD =2 
Vậy: BD = 4 (cm) 
Trên đây là bài giải với ĐK: BD là phân giác trong. 
còn nếu BD là phân giác ngoài thì tỉ lệ: AC/AD =AB/BC 
DO VẬY BD = 8 cm 

hoac vay

23 tháng 3 2016

o bam nham