Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ tam giác đều ADM (M,B cùng thuộc 1 nửa mặt phẳng bờ AD)
Tam giác ABC cận tại A góc A => góc B = góc C = 40o
Góc BAM = 40o
Tam giác ABC=tam giác BAM(c.g.c)
=> AC=BM (2 cạnh tương ứng)
Lại có AB=AC
=> BM=AC
Dễ dàng chứng minh
Tam giác ABD=Tam giác BMD(c.c.c)
Suy ra góc ADB = góc MDB = \(\frac{60^0}{2}\)= 30o
Lại có góc CBD = góc BCA -góc CDB = 40 - 30 = 10o
A B C D M 1 2
Vẽ tam giác đều ADM (M,B thuộc cùng một nửa mặt phẳng bờ AD)
\(\Delta ABC\)cân tại A, \(\widehat{A}\)= 100o => \(\widehat{B}=\widehat{C}=40^o\)
\(\widehat{BAM}\)= 100o - 60o = 40o
\(\widehat{ABC}\)và \(\widehat{BAM}\)( = 40o) ; AB chung
\(\Delta ABC=\Delta BAM\left(c-g-c\right)\)
=> AC = BM
Có AC = AB (gt)
=> BM = BA
\(\Delta ABD=\Delta MBD\left(c-c-c\right)\)
=> \(\widehat{D_1}=\widehat{D_2}=\frac{60^o}{2}=30^o\)
Xét \(\Delta CBD\)có \(\widehat{BCA}\)là góc ngoài
=> \(\widehat{BCA}=\widehat{CBD}+\widehat{D_1}\)
=> \(\widehat{CBD}=40^o-30^o=10^o\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) \(\Delta ABC\)cân tại A có \(\widehat{B}=\widehat{C}\)nên \(\widehat{A}=180^0-2.40^0=100^0\)
Vẽ \(DE//BC\left(E\in AB\right)\)
Trên tia BC lấy điểm F sao cho BD = BF.
Vì BD là phân giác của \(\widehat{B}\)nên \(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}=20^0\)
Vì \(DE//BC\)nên \(\widehat{EDB}=\widehat{DBC}\)(so le trong)
Mà \(\widehat{ABD}=\widehat{DBC}\)(Do BD là phân giác của \(\widehat{B}\))
Suy ra \(\widehat{EDB}=\widehat{ABD}\)\(\Rightarrow\Delta EBD\)tại E \(\Leftrightarrow EB=ED\)(1)
Vì \(DE//BC\)nên \(\hept{\begin{cases}\widehat{AED}=\widehat{B}\\\widehat{ADE}=\widehat{C}\end{cases}}\)(đồng vị)
Mà \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A) nên \(\widehat{AED}=\widehat{ADE}\)
\(\Rightarrow\Delta AED\)cân tại A \(\Rightarrow AE=AD\)
Lại có AB = AC (gt) nên EB = DC (2)
Từ (1) và (2) suy ra ED = DC
BD = BF(theo cách vẽ) nên \(\Delta BDF\)cân tại B có \(\widehat{DBF}=20^0\)
\(\Rightarrow\widehat{BDF}=\widehat{BFD}=\frac{180^0-20^0}{2}=80^0\)
Mà \(\widehat{DFB}+\widehat{DFC}=180^0\)(kề bù) nên \(\widehat{DFC}=180^0-80^0=100^0\)
Áp dụng định lý về tổng ba góc trong tam giác vào tam giác FDC, có:
\(\widehat{FDC}=180^0-100^0-40^0=40^0\)
Xét \(\Delta AED\)và \(\Delta FDC\)có:
\(\widehat{ADE}=\widehat{FCD}\left(=40^0\right)\)
ED = DC( cmt)
\(\widehat{AED}=\widehat{FDC}\left(=40^0\right)\)
Suy ra \(\Delta AED=\Delta FDC\left(g-c-g\right)\)
\(\Rightarrow AD=FC\)(hai cạnh tương ứng)
Lúc đó: \(BD+AD=BF+FC=BC\left(đpcm\right)\)
b) Vẽ tam giác đều AMG trên nửa mặt phẳng bờ AB chứa điểm C
Ta có: \(\widehat{GAC}=\widehat{BAC}-\widehat{BAG}=100^0-60^0=40^0\)
Cách khác theo cô Huyền:3
Câu hỏi của thu - Toán lớp 7 - Học toán với OnlineMath