K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Ta có : Tam giác ABM cân tại B

=>MAB^=AMB^ (1)

Lại có : IMB^=IAB^=90* (2)

Từ 1 và 2 : +)IAM^=90*-MAB^

                  +)IMA^ =90*-AMB^

                  =>IAM^=IMA^

=>Tam giác IAM cân tại I

=>IA=iM

18 tháng 2 2020

A B C M I N K P 1 2
''∠'' là góc nhé.
a) Vì ∆ABC vuông tại A (GT) 
=> ∠BAC = 90o (ĐN) (1)
Vì IM ⊥ BC (GT)
=> ∠IMB = 90o 
Mà ∠BAC = 90o (Theo (1))
(Ngoặc ''}'' 2 điều trên)
=> ∠BAC = ∠IMB = 90o
Hay ∠BAI = ∠IMB = 90o (2)
Xét ∆ABI và ∆MBI có :
∠BAI = ∠IMB = 90o (Theo (2))
  BI chung
  BA = BM (Gt)
=> ∆ABI = ∆MBI (cạnh huyền - cạnh góc vuông)
=> AI = IM (2 cạnh tương ứng) (3)

b) Ta có : ∠BAC + ∠NAC = 180(2 góc kề bù)
    Mà ∠BAC = 90o (Theo (1))
=> 90o + ∠NAC = 180
=> ∠NAC = 180- 90o = 90o
Vì IM ⊥ BC (GT) => ∠IMC = 90(ĐN)
(Ngoặc ''}'' 2 điều trên)
=> ∠NAC = ∠IMC = 90o
Hay ∠NAI = ∠IMC = 90o (4)
Lại có : ∠I1 = ∠I2 (2 góc đối đỉnh) (5)
Xét ∆ANI và ∆MCI có :
∠NAI = ∠IMC = 90o (Theo (4))
AI = MI (Theo (3))
∠I1 = ∠I(Theo (5))
=> ∆ANI = ∆MCI (g.c.g)
=> AN = MC (2 cạnh tương ứng)
Mà AN + BA = BN
      MC + BM = BC 
     BA = BM (GT)
(Ngoặc ''}'' 4 điều trên)
=> BN = BC
=> ∆NBC cân tại B (ĐN)
P/s : Xin lỗi, mình chỉ làm được đến đây thôi, nghỉ nhiều quá nên mình ngu hẳn, có gì mình nghiên cứu lại sau :(.

1 tháng 11 2021

A B C M N I E

a)

*AMN cân

Vì t/g ABC cân tại A (gt)

=>^B=^C

Do đó: ^ABM=^ACN

Xét t/ABM và t/gACN có

góc ^A chung

AB=AC ( vì t/g ABC cân)

^ABM=^ACN (cmt)

Nên t/gABM=t/gACN (g.c.g)

=>AM=AN (2 cạnh tương ứng = nhau)

=> tam giác ANM cân

*MN//BC

Từ tam giác ANM cân nên => ^A+^ANM+^AMN=180o

      tam giác ABC cân nên=>^A+^B+^C=180o

Mà ^B=^C 

      ^ANM=^AM 

Nên: ^C=^ANM

=>^MCN=^ANM

Mà 2 góc này lại ở vị trí so le trong

Do đó MN//BC (đpcm)

b) 

Vì t/g ABC cân tại A

^ABC=^ACB

Mà BM là tia p/g của ^ABC

      CN là tia p/g của ^ACB

do đó: ^MBC=^NCB

=> tam giác EBC cân tại E

Xét t/g AEB và t/g AEC có:

AB=AC (vì t/g ABC cân)

^ABM=^ACN (cmt)

=BE=CE (EBC cân)

=> t/gAEB=t/gAEC(c.g.c)

=>^BAE=^CAE (2 góc tương ứng = nhau)

Do đó AE là tia phân giác của t/gBAC (1)

Xét t/g AIB và t/gAIC có

AB=AC ( vì t/g ABC cân)

IB=IC (I là trung điểm BC)

=>tam giác AIB=t/gAIC (c.g.c)

=>^IAB=^IAC (2 góc tương ứng = nhau)

Do đó:AI là tia phân giác của ^BAC (2)

Từ (1) và (2) => A,I,E thằng hàng ( 2 tia phân giác của 1 góc thì thẳng hàng).

a) Sửa đề: Cm AG vuông góc với BC

Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AN=NB=AM=MC

Xét ΔNBC và ΔMCB có 

NB=MC(cmt)

\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔNBC=ΔMCB(c-g-c)

Suy ra: \(\widehat{NCB}=\widehat{MBC}\)(hai góc tương ứng)

hay \(\widehat{GBC}=\widehat{GCB}\)

Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)(cmt)

nên ΔGBC cân tại G(Định lí đảo của tam giác cân)

Suy ra: GB=GC(hai cạnh bên)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: GB=GC(cmt)

nên G nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AG là đường trung trực của BC

hay AG\(\perp\)BC(đpcm)