K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C M N H K O a)Ta có:

△ABC cân tại A⇒\(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét △ABM và △ACN có:

AB=AC (gt)

\(\widehat{ABM}=\widehat{ACN}\) (cmt)

BM=CN (gt)

⇒△ABM = △ACN (cgc)

b)Từ △ABM = △ACN (câu a)

\(\widehat{AMB}=\widehat{ANC}\)(2 góc tương ứng) hay \(\widehat{HMB}=\widehat{KNC}\)

Xét △CKN vuông tại K và △BHM vuông tại H, ta có:

CN=BM (gt)

\(\widehat{KNC}=\widehat{HMB}\) (cmt)

⇒△CKN= △BHM (cạnh huyền- góc nhọn)

⇒CK=BH (2 cạnh tương ứng)

Xét △CKA vuông tại K và △BHA vuông tại H, ta có:

AC=AB (gt)

CK=BH (cmt)

⇒△CKA= △BHA (cạnh huyền- cạnh góc vuông)

⇒KA=HA (2 cạnh tương ứng)

c)Từ △CKN= △BHM (câu b)

\(\widehat{NCK}=\widehat{MBH}\) (2 góc tương ứng)

\(\widehat{NCK}=\widehat{BCO}\)(đối đỉnh); \(\widehat{MBH}=\widehat{CBO}\)(đối đỉnh)

\(\widehat{BCO}=\widehat{CBO}\) ⇒△OBC cân tại O

d)△ABM = △ACN (câu a) ⇒AM=AN (2 cạnh tương ứng)

⇒△AMN cân tại A

\(\widehat{MAN}=70^0\Rightarrow\widehat{ANM}=\widehat{AMN}=\frac{180^0-\widehat{MAN}}{2}=\frac{180^0-70^0}{2}=\frac{110^0}{2}=55^0\)

\(\Rightarrow\widehat{NCK}=\widehat{MBH}=180^0-\left(90^0+55^0\right)=180^0-145^0=35^0\Rightarrow\widehat{OCB}=\widehat{OBC}=35^0\Rightarrow\widehat{BOC}=110^0\)

9 tháng 8 2020

1

a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)

rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau 

suy ra AM = AN 

b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)

rồi chứng minh hai tam giác ABH và ACK bằng nhau

suy ra BH = CK

c) vì hai tam giác ABH và ACK bằng nhau (cmt)

nên AH = AK

d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)

nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)

còn lại tự cm

e) dễ cm tam giác ABC đều 

vẽ \(BH\perp AC\)

nên BH vừa là đường cao; phân giác và trung tuyến

dễ cm \(\Delta BHC=\Delta NKC\)

nên \(\widehat{BCH}=\widehat{NCK}=60^0\)

từ đó dễ cm AMN cân và OBC dều

20 tháng 4 2017

sao vẽ dc hình z Thành Đạt

24 tháng 2 2019

A B C M N O H K 1 2 1 2

Cm: a) Ta có: góc ABC + góc ABM = 1800 (kề bù)

                  góc ACN + góc ACB = 1800 (kề bù)

và góc ABC = góc ACB (vì t/giác ABC cân tạo A)

=> góc ABM = góc ACN

Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

    góc ABM = góc ACN (cmt)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) ko đề

c) Xét t/giác AHB và t/giác AKC

có  góc H1 = góc K1 = 900 (gt)

AB = AC (gt)

góc HAB = góc KAC (vì t/giác ABM = t/giác ACN)

=> t/giác AHB = t/giác AKC (ch - gn)

=> AH = AK (hai cạnh tương ứng)

Xét t/giác AHO và t/giác AKO

có AH = AK (cmt)

  góc H1 = góc K1 = 900 (gt)

  AO : chung

=> t/giác AHO = t/giác AKO (ch - cgv)

=> HO = KO(hai cạnh tương ứng)

Mà HB + BO = HO

  KC + CO = OK

và HB = KC (vì t/giác AHB = t/giác AKC)

=> BO = CO 

=> t/giác OBC là t/giác cân tại O

Bài 6: 

a: Xét ΔBAC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(AH=\sqrt{AB^2-BH^2}=4.8\left(cm\right)\)

23 tháng 3 2018

Hình như bài này là bai 71,72 gì đó ở SGK 7ở gần cuối trang thì phải

24 tháng 2 2020

a)Xét tam giác ABM và tam giác CAN có:

BM=CN(gt)

AB=AC(do tam giác ABC cân)

\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)

Suy ra \(\Delta ABM=\Delta CAN\)(c.g.c)

24 tháng 2 2020

Tgiac ABC cân tại A => AB = AC, góc ABC = ACB

a) góc ABC = ACB => góc ABM = ACN (góc kề bù)

Xét tgiac ABM và ACN có:

+ BM = CN

+ góc ABM =ACN (cmt)

+ AB = AC

=> Tgiac ABM = ACN (c-g-c)

=> đpcm

b) Do tgiac ABM = ACN (cmt) nên góc BAM = CAN (2 góc t/ứng)

Xét tgiac AHB và AKC có:

+ AB = AC

+ góc AHB = AKC = 90 độ

+ góc ABM = CAN

=> Tgiac AHB = AKC (ch-gn)

=> AH = AK (2 cạnh t/ứng)

=> đpcm