\(\Delta\)ABC cân tại B, có \(\widehat{A}\)= 70 độ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 6: 

a: Xét ΔBAC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(AH=\sqrt{AB^2-BH^2}=4.8\left(cm\right)\)

9 tháng 8 2020

1

a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)

rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau 

suy ra AM = AN 

b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)

rồi chứng minh hai tam giác ABH và ACK bằng nhau

suy ra BH = CK

c) vì hai tam giác ABH và ACK bằng nhau (cmt)

nên AH = AK

d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)

nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)

còn lại tự cm

e) dễ cm tam giác ABC đều 

vẽ \(BH\perp AC\)

nên BH vừa là đường cao; phân giác và trung tuyến

dễ cm \(\Delta BHC=\Delta NKC\)

nên \(\widehat{BCH}=\widehat{NCK}=60^0\)

từ đó dễ cm AMN cân và OBC dều

20 tháng 4 2017

sao vẽ dc hình z Thành Đạt

24 tháng 2 2020

a)Xét tam giác ABM và tam giác CAN có:

BM=CN(gt)

AB=AC(do tam giác ABC cân)

\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)

Suy ra \(\Delta ABM=\Delta CAN\)(c.g.c)

24 tháng 2 2020

Tgiac ABC cân tại A => AB = AC, góc ABC = ACB

a) góc ABC = ACB => góc ABM = ACN (góc kề bù)

Xét tgiac ABM và ACN có:

+ BM = CN

+ góc ABM =ACN (cmt)

+ AB = AC

=> Tgiac ABM = ACN (c-g-c)

=> đpcm

b) Do tgiac ABM = ACN (cmt) nên góc BAM = CAN (2 góc t/ứng)

Xét tgiac AHB và AKC có:

+ AB = AC

+ góc AHB = AKC = 90 độ

+ góc ABM = CAN

=> Tgiac AHB = AKC (ch-gn)

=> AH = AK (2 cạnh t/ứng)

=> đpcm

18 tháng 1 2018

Bạn tham khảo bài này nha!

Cho Tam giác cân ABC AB=AC=10 cm,BC=16 cm.Trên đường cao AH lấy điểm I sao cho AI=1/3 AH.Kẻ tia Cx song song?

với AH, cắt tia BI tại D 
a/ Tính các góc của tam giác ABC ( câu này em tìm ra được rùi làm dùm em câu b thui ) 
b/Tính diện tích của tứ giác ABCD

Diện tích tứ giác ABCD = diện tích tam giác ABH + diện tích tứ giác AHCD 
diện tích tam giác ABH = 1/2 AH x BH 
trong đó: H là trung điểm của BC (tam giác ABC cân tại A, AH là đường cao) 
nên BH = 8 cm 
tam giác ABH vuông tại H nên AH = căn bậc hai của ( AB x AB - BH x BH) 
AH = 6cm 
=> S tam giác ABH = 1/2 8 x 6 = 24cm2 
- ta có IH // CD mà H là trung điểm BC => HI là đường trung bình của tam giác CBD 
=> HI = 1/2 CD 
mà HI = 2/3 AH = 2/3 x6 = 4 
=> CD = 8cm 
AH // CD => AHCD là hình thang 
Diện tích hình thang AHCD = 1/2 HC x ( AH + CD) = 1/2 8 x ( 6+8)= 56 cm2 
Vậy diện tích tứ giác ABCD = 24 + 56 = 80cm2 

A B C M N H K O a)Ta có:

△ABC cân tại A⇒\(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét △ABM và △ACN có:

AB=AC (gt)

\(\widehat{ABM}=\widehat{ACN}\) (cmt)

BM=CN (gt)

⇒△ABM = △ACN (cgc)

b)Từ △ABM = △ACN (câu a)

\(\widehat{AMB}=\widehat{ANC}\)(2 góc tương ứng) hay \(\widehat{HMB}=\widehat{KNC}\)

Xét △CKN vuông tại K và △BHM vuông tại H, ta có:

CN=BM (gt)

\(\widehat{KNC}=\widehat{HMB}\) (cmt)

⇒△CKN= △BHM (cạnh huyền- góc nhọn)

⇒CK=BH (2 cạnh tương ứng)

Xét △CKA vuông tại K và △BHA vuông tại H, ta có:

AC=AB (gt)

CK=BH (cmt)

⇒△CKA= △BHA (cạnh huyền- cạnh góc vuông)

⇒KA=HA (2 cạnh tương ứng)

c)Từ △CKN= △BHM (câu b)

\(\widehat{NCK}=\widehat{MBH}\) (2 góc tương ứng)

\(\widehat{NCK}=\widehat{BCO}\)(đối đỉnh); \(\widehat{MBH}=\widehat{CBO}\)(đối đỉnh)

\(\widehat{BCO}=\widehat{CBO}\) ⇒△OBC cân tại O

d)△ABM = △ACN (câu a) ⇒AM=AN (2 cạnh tương ứng)

⇒△AMN cân tại A

\(\widehat{MAN}=70^0\Rightarrow\widehat{ANM}=\widehat{AMN}=\frac{180^0-\widehat{MAN}}{2}=\frac{180^0-70^0}{2}=\frac{110^0}{2}=55^0\)

\(\Rightarrow\widehat{NCK}=\widehat{MBH}=180^0-\left(90^0+55^0\right)=180^0-145^0=35^0\Rightarrow\widehat{OCB}=\widehat{OBC}=35^0\Rightarrow\widehat{BOC}=110^0\)

29 tháng 12 2018

Vẽ hình, viết GT, KL và trình bày cách làm giúp mk nhé!!!

1. Cho tam giác ABC cân ở A, Góc BAC = 1800 . Gọi O là một điểm nằm trên tia phân giác của góc C sao cho góc CBO = 120 . Vẽ tam giác đều BOM ( M và A cùng thuộc nửa mặt phẳng bở BO). Chứng minh 3 điểm C, A, O thẳng hàng2. Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CD lấy điểm N sao cho BM=CN .a. Chứng minh tam giác ABM = tam giác ACNb. Kẻ BH vuông góc AM; CK vuông góc AN (H...
Đọc tiếp

1. Cho tam giác ABC cân ở A, Góc BAC = 1800 . Gọi O là một điểm nằm trên tia phân giác của góc C sao cho góc CBO = 120 . Vẽ tam giác đều BOM ( M và A cùng thuộc nửa mặt phẳng bở BO). Chứng minh 3 điểm C, A, O thẳng hàng

2. Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CD lấy điểm N sao cho BM=CN .
a. Chứng minh tam giác ABM = tam giác ACN
b. Kẻ BH vuông góc AM; CK vuông góc AN (H thuộc AM; K thuộc AN ). Chứng minh AH = AK.
c. Gọi O là giao điểm của BH và KC. Tam giác OBC là tam giác gì ? Vì sao ?

3. Cho tam giác ABD, có góc B = 2 góc D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của BA lấy BE=BH. Đường thẳng EH cắt AD tại F. Chứng minh FH=FA=FD

4. Cho góc nhọn  \(\widehat{xOy}\) . Gọi I là một điểm thuộc tia phân giác của \(\widehat{xOy}\). Kẻ IA \(\perp\) Ox (Điểm A thuộc tia Ox ) và IB \(\perp\)  Oy (Điểm B thuộc tia Oy )

a. Chứng minh IA = IB

b. Cho biết OI = 10cm, AI = 6cm. Tính OA

c. Gọi K là giao điểm của  BI và Ox và M là giao điểm của AI với Oy. Chứng minh ba điểm B, K, C thẳng hàng

 

 

1
11 tháng 2 2016

Câu 1 trước