Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đt tâm O đường kính AH cắt AB tại M, AC tại N.
1. Chứng minh rằng MN là đường kính của đt O và tứ giác BMNC nội tiếp.
2. Gọi I là trung điểm của BC, lấy P là điểm đối xứng vs A qua I, gọi Q là trung điểm của HP gọi K là giao điểm của MN và AI.
a, Chứng minh rằng AI vuông góc vs MN
b, Chứng minh rằng Q là tâm đường tròn ngoại tiếp tứ giác BMNC
bn đăng những câu này ít người trả lời tử tế lắm ha
Gọi D là trung điểm BC. Kéo dài tia AR cắt đường tròn (K) tại điểm thứ hai S. Hạ đuờng thẳng KH vuông góc AS cắt BC ở I.
Do AR là đường đối trung của \(\Delta\)PAQ nên dễ thấy \(\Delta\)APD ~ \(\Delta\)ASQ => ^ADP = ^AQS.
Mà ^AQS = 1/2Sđ(AS = ^AKH nên ^ADP = ^AKH. Ta có: ^ADP = ^ACB (Để ý DP vuông góc AB)
Suy ra: ^AKH = ^ACB => Tứ giác AKIC nội tiếp => ^AKC = ^AIC (Góc ở 2 đỉnh liền kề) => ^AKN = ^AID (Kề bù) (1)
Xét đường tròn (K) có dây PQ, D là trung điểm PQ => KP vuông góc PQ => ^KDR = 900
Từ đó: Tứ giác KHRD nội tiếp. Ta cũng có: Tứ giác AIDH nội tiếp (AI) nên ^AID = ^DHR = ^DKR (2)
Từ (1) và (2) => ^AKN = ^DKR. Ta lại có:
^DAK = ^DAQ + ^KAQ = ^RAP + ^BAP (Dùng t/c đg đối trg và PQ vuông góc AB) = ^BAR
Dựa vào tính chất góc ngoài của tam giác: ^KNM = ^NAK + ^AKN = ^NAD + ^DAK + ^DKR
= ^NAR + ^BAR + ^DKR = ^NAR + 900 - ^ARP + 900 - ^DRK = ^NAR + 1800 - (^ARP + ^DRK)
= ^NAR + ^ARM = ^KMN. Vậy thì ^KNM = ^KMN => \(\Delta\)MKN cân đỉnh K => KM=KN (đpcm).