Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC cân tại A => AB = AC
=> Góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE
AB = AC ( cmt )
Góc ABD = góc ACE ( cmt )
BD = CE ( gt )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> Góc BAD = góc CAE ( 2 góc tương ứng )
=> AD = AC ( 2 cạnh tương ứng )
Xét tam giác ADE và tam giác ACE
AD = AC ( cmt )
DE = EC( gt )
AE chung
=> tam giác ADE= tam giác ACE ( c.c.c )
=> góc DAE = góc EAC ( 2 góc tương ứng )
Ta có: góc BAD = góc EAC ( cmt )
Góc DAE = góc EAC ( cmt )
=> góc BAD = góc DAE = góc EAC
Hình và GT,KL chắc bạn tự làm đc
Xét 2 tam giác:\(\Delta ABD\)và \(\Delta AEC\)
=> \(\Delta ABD\)= \(\Delta ACE\)(c-g-c)
=> \(BÂD=EÂC\)(2 góc tương ứng)
Trên tia AD lấy điểm F sao cho D là trung điểm của AF,ta có \(\Delta ADE=\Delta FDB\)(c.g.c),do đó \(DÂE=DFB\)và AE = BF
Vì \(ÂEC>ÂBC=ÂCB\)vì thế trong \(\Delta AEC\)thì AE > AC.Như vậy trong \(\Delta ABF\)thì BF < AB,suy ra \(BÂD=BFD\)
Vậy \(BÂD\)= góc CAE < góc DAE
~Hok tốt~
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath
a) (câu này làm vậy không biết được không..)
Ta có: \(\hept{\begin{cases}\widehat{BAD}=\widehat{DAE}\left(gt\right)\\AD:chung\left(gt\right)\end{cases}}\Rightarrow AB=AE\) (Giống như là dựa vào tạo góc..)
b) (Vẽ hình chắc chưa ổn lắm, bạn tự lấy thước ra chỉnh)
Xét tam giác ABE có AB = AE (cmt) => tam giác ABE cân tại A
=> AD vừa là đường cao vừa là trung tuyến
=> BD = DE
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath
Xét ∆ABD và ∆ACE có: AB = AC (∆ABC cân tại A)
ABDˆ=ACEˆABD^=ACE^ (∆ABC cân tại A)
BD = EC (gt)
Do đó ∆ABD = ∆ACE (c.g.c) ⇒BADˆ=EACˆ⇒BAD^=EAC^
Ta có AEBˆ>Cˆ(AEBˆAEB^>C^(AEB^ là góc ngoài của tam giác ACD)
Cˆ=BˆC^=B^ (∆ABC cân tại A)
Nên AEBˆ>BˆAEB^>B^
∆ABE có AEBˆ>BˆAEB^>B^ => AB > AE
Trên tia đối của tia DA lấy điểm M sao cho DM = DA
Xét ∆DME và ∆DAB có DM = DA, MDEˆ=ADBˆMDE^=ADB^ (đối đỉnh), DE = BD (gt)
Do đó ∆DME = ∆DAB (c.g.c) ⇒ME=AB,DMEˆ=BADˆ⇒ME=AB,DME^=BAD^
Ta có ME > AE. ∆AEM có ME > AE ⇒DAEˆ>DMEˆ⇒DAE^>DME^
Nên DAEˆ>BADˆ=EACˆ.DAE^>BAD^=EAC^.
Vậy trong ba góc BAD, DAE, EAC thì góc DAE lớn nhất.
Xét ΔBAD và ΔCAE có
AB=AC
\(\widehat{B}=\widehat{C}\)
BD=CE
Do đó: ΔBAD=ΔCAE
Suy ra: \(\widehat{BAD}=\widehat{CAE}\)
Xét ΔADB và ΔAEC có
AB=AC
góc B=góc C
BD=CE
=>ΔADB=ΔAEC
=>góc BAD=góc CAE