K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

giup em voi

Hình Thang cân

Ta có: tam giác ABC là tam giác cân tại A.

=> góc B= góc C

Vì BD và CE là phân giác góc B và C

=> góc DBC = góc EBD = góc DCE = góc ECB

Xét tam giác EBC và tam giác DBC có:

góc ECB = góc DBC

góc BCD = góc EBC

Chung cạnh BC

20 tháng 12 2023

A B C H D E K I

a/

Ta có

\(AB\perp AC\Rightarrow AD\perp AC;HE\perp AC\) => AD//HE

\(AC\perp AB\Rightarrow AE\perp AB,HD\perp AB\) => AE//HD

=> ADHE là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Mà \(\widehat{A}=90^o\) 

=> ADHE là hình CN

b/

Xét tg vuông ADH có

\(DH=\sqrt{AH^2-AD^2}\) (Pitago)

\(\Rightarrow DH=\sqrt{5^2-4^2}=3cm\)

\(\Rightarrow S_{ADHE}=AD.DH=4.3=12cm^2\)

c/

Ta có

DB=DI (gt); DH=DK (gt) => BKIH là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Xét tg AKH có

\(HD\perp AB\Rightarrow AD\perp HK\) (1)

BKIH là hình bình hành (cmt) => KI//BH (cạn đối hbh)

Mà \(AH\perp BC\left(gt\right)\Rightarrow BH\perp AH\)

\(\Rightarrow KI\perp AH\) (2)

Từ (1) và (2) => I là trực tâm của tg AKH => \(AK\perp HI\) (trong tg 3 đường cao đồng quy)

 

16 tháng 1 2017

Đáp án A

 

 

9 tháng 12 2015

M B C A D H

10 tháng 12 2015

MH =\(\sqrt{2}a\) => MC = \(2\sqrt{2}a\) và CH = \(\sqrt{6}a\)

=> BC = 2CH = \(2\sqrt{6}a\)

=> AC = BC = \(2\sqrt{6}a\)

Tam giác DBC vuông cân tại D => DH = HB = HC = \(\sqrt{6}a\) => DC = \(\sqrt{12}a\)

Tam giác MDC vuông tại M => MD2 = DC2 - MC2 = 12a2 - 8a2 = 4a2 => MD = 2a

Tam giác MAC vuông tại M => MA2 = AC2 - MC2 = 24a2 - 8a2 = 16a => MA = 4a

Trong mặt phẳng BCD, điểm H cách đều B, C, D => Hình cầu ngoại tiếp ABCD nằm trên đường thẳng đi qua H và vuông góc với mặt phẳng BCD. Đường thẳng này nằm trong mặt phẳng HDA (Vì đường thẳng đó vuông góc với BC nên sẽ nằm trên mặt phẳng HDA).

Đồng thời tâm hình cầu cách đều A và D => Tâm đó nằm trên đường trung trực của AD trong mặt phẳng HDA.

Ta vẽ riêng tam giác HDA ra, kẻ đường HE vuông góc với HD cắt AD tại E. Ta có HM là đường cao tam giác vuông HED nên:

HD2 = MD.DE => 6a2 = 2a. DE => DE = 3a.

Mà AD = MD + DA = 2a + 4a = 6a => AE = AD - DE = 6a -3a = 3a => Điểm E là điểm giữa của A và D.

Vậy E chính là tâm hình cầu ngoại tiếp tứ diện ABCD, bán kính hình cầu là ED = 3a => Thể tích khối cầu ....

5 tháng 4 2016

S A B H C

Tam giác ABC vuông cân tại A nên \(BC=2AH=2a\)

Từ đó \(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}a.2a=a^2\)

Vì \(SA\perp\left(ABC\right);AH\perp BC\) suy ra \(SH\perp BC\)

Do đó : \(\left(\left(SBC\right),\right)\left(ABC\right)=\widehat{SHA}=60^0\)

Suy ra \(SA=AH.\tan60^0=a\sqrt{3}\)

Vậy \(V_{SABC}=\frac{1}{3}SA.S_{ABC}=\frac{1}{3}a\sqrt{3}a^2=\frac{a^3\sqrt{3}}{3}\)

6 tháng 4 2017

Giải bài 5 trang 26 sgk Hình học 12 | Để học tốt Toán 12

Giải bài 5 trang 26 sgk Hình học 12 | Để học tốt Toán 12

Giải bài 5 trang 26 sgk Hình học 12 | Để học tốt Toán 12

31 tháng 7 2016

http://tin.tuyensinh247.com/de-thi-thu-dai-hoc-mon-toan-khoi-b-nam-2014-lan-cuoi-thpt-chuyen-dh-vinh-c31a17586.html 

Cau 7a nha 

1 tháng 5 2017

16 tháng 3 2019

Phương pháp:

Xác định góc giữa các mặt phẳng (P) và (Q) ta thực hiện các bước sau:

+ Xác định giao tuyến d của (P) và (Q)

+ Trong mặt phẳng (P) xác định đường thẳng a ⊥ d trong mặt phẳng (Q) xác định đường thẳng b ⊥ d 

+ Khi đó góc giữa (P) và (Q) là góc giữa hai đường thẳng a và b

Cách giải:

Gọi M là trung điểm BC => AM ⊥ BC (do ∆ ABC cân tại A). 

Lại có  ∆ SAB =  ∆ SAC(c.g.c) hay  ∆ SBC cân tại S

=> SM ⊥ BC

Theo đề bài

Lại thấy  ∆ ABM vuông tại M có AB = a; 

Xét tam giác SAM vuông tại A có SA =  AM = a 2  nên  ∆ SAM vuông cân tại A hay  ∠ S M A =   45 °

Vậy góc giữa (SBC) và (ABC) bằng  45 °

Chọn D.