Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AKMN có
MN//AK
AN//MK
Do đó: AKMN là hình bình hành
mà \(\widehat{NAK}=90^0\)
nên AKMN là hình chữ nhật
b: Xét ΔAMQ có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAMQ cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc MAQ(1)
Xét ΔAME có
AK là đường cao
AK là đường trung tuyến
DO đó: ΔAME cân tại A
mà AK là đường cao
nên AK là tia phân giác của góc MAE(2)
Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)
hay Q,E,A thẳng hàng
a: Ta có: D đối xứng với A qua BC
nên BC là đường trung trực của AD
=>BC vuông góc với AD tại trung điểm của AD
=>F là trung điểm của AD
Ta có: ΔABC cân tại A
mà AF là đường cao
nên F là trung điểm của BC
Xét tứ giác ABDC có
F là trung điểm của AD
F là trung điểm của BC
Do đó:ABDC là hình bình hành
mà AB=AC
nên ABDC là hình thoi
b: Xét ΔEBC có
BA là đường trung tuyến
BA=EC/2
Do đó:ΔEBC vuông tại B
=>EB\(\perp\)BC
c: Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó; ADBE là hình bình hành