K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

a,xét tam giác ABD và tam giác ACE có:

              AB=AC(gt)

   vì \(\widehat{ABC}\)=\(\widehat{ACB}\)suy ra \(\widehat{ABD}\)=\(\widehat{ACE}\)

              BD=CE(gt)

\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)

b,xét 2 tam giác vuông ADH và AEK có:

                AD=AE(theo câu a)

                \(\widehat{DAH}\)\(\widehat{EAK}\)(theo câu a)

\(\Rightarrow\)\(\Delta\)ADH=\(\Delta\)AEK(CH-GN)

\(\Rightarrow\)DH=EK

c,xét tam giác AHO và tam giác AKO có:

              AH=AK(theo câu b)

              AO cạnh chung

\(\Rightarrow\)\(\Delta\)AHO=\(\Delta\)AKO( cạnh góc vuông-cạnh huyền)

\(\Rightarrow\)\(\widehat{HAO}\)=\(\widehat{KAO}\)

\(\Rightarrow\)AO là phận giác của góc BAC

d,câu này dễ nên bn có thể tự làm tiếp nhé

             

27 tháng 3 2019

P/s : Hình bạn tự vẽ giúp mình nha. Cảm ơn bạn nhiều !

a) Xét 🔺ABD và 🔺ACE có :

AB = AC ( 🔺ABC cân tại A )

^ABC = ^ACB (🔺ABC cân tại A )

BD = CE ( gt )

Suy ra 🔺ABD = 🔺ACE ( c.g.c )

b) Xét 🔺HBD và 🔺KCE có :

^BHD = ^CKE = 90 độ

BD = BE ( gt )

^ABC = ^ACB ( 🔺ABC cân tại A )

Suy ra 🔺HBD = 🔺KCE ( ch - gn )

=> DH = EK ( 2 cạnh tương ứng )

c) Xét 🔺ABM và 🔺ACM có :

AB = AC ( 🔺ABC cân tại A )

MB = MC ( vì M là trung điểm của BC )

AM là cạnh chung

Suy ra 🔺ABM = 🔺ACM ( c.c.c )

=> ^BAM = ^CAM ( 2 góc tương ứng )

hay AM là tia phân giác của ^BAC (1)

mà M nằm giữa A và O ( hình vẽ )

=> AO cũng là tia phân giác của ^BAC (2)

d) Từ (1) và (2) => A, M, O thẳng hàng

12 tháng 6 2017

Ta có hình vẽ:

A B C M D E H K O

a/ Xét tam giác ABD và tam giác ACE có:

AB = AC (t/g ABC cân)

góc B = góc C (t/g ABC cân)

BD = CE (GT)

=> tam giác ABD = tam giác ACE

b/ Xét hai tam giác vuông ADH và AEK có:

góc HAD = góc KAE (t/g ABD = t/g ACE)

AD = AE (t/g ABD = t/g ACE)

=> tam giác ADH = tam giác AEK

=> DH = EK.

c/ Xét hai tam giác vuông AHO và AKO có:

AO: cạnh chung

AH = AK (t/g ADH = t/g AEK)

=> tam giác AHO = tam giác AKO

=> góc HAO = góc KAO

hay góc BAO = góc CAO

Vậy AO là pg góc BAC.

d/ Xét tam giác ABM và tam giác ACM có:

AB = AC (t/g ABC cân)

AM: cạnh chung

BM = MC (M là trung điểm BC)

=> tam giác ABM = tam giác ACM

=> góc BAM = góc CAM

Vậy AM là pg góc BAC

Ta có: AO là pg góc BAC

và AM là pg góc BAC

=> AO trùng AM

hay A;M;O thẳng hàng.

---> đpcm.

P/s : mk nhầm kí hiệu chỗ hình vẽ: thay vì AB = AC nhưng mk đánh kí hiệu là AD = AE nên khi làm bài bạn sửa lại nhé.

12 tháng 6 2017

Cám ơn bạn nhưng mình gửi câu hỏi không phải để làm bài mà để được giao lưu với mọi người.^_^Bạn nghĩ sai về acc này rồi.

14 tháng 1 2018

a ) Xét \(\Delta ABD\)và \(\Delta ACE\) có : \(BD=CE\left(gt\right);\hept{\begin{cases}\widehat{B}=\widehat{C}\\AB=AC\end{cases}\left(gt\right)}\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(cgc\right)\)

Xét \(\Delta BKE\)và \(\Delta CHD\) có : \(\widehat{B}=\widehat{C}\left(gt\right);\widehat{BKE}=\widehat{CHD}=90^0\left(gt\right);BE=DC\left(=BD+DE=EC+DE\right)\)

\(\Rightarrow\Delta BKE=\Delta CHD\)(CH-GN) \(\Rightarrow DH=EK\)

b) Theo a  \(\Delta BKE\)\(\Delta CHD\) \(\Rightarrow\widehat{KEB}=\widehat{HDC}\Rightarrow\Delta ODE\) cân tại O

c ) Có tam giác ODE cân tại O \(\Rightarrow OD=OE\)

\(DH=OD+OH;EK=OE+OK\) Mà HD = KE (cmt) ; OD = OE (cmt)=> OK = OH 

=> O nằm trên đường chung trực của HK

 \(\Delta BKE\)\(\Delta CHD\)  theo a nên BK = HC ; Mà AB = AC (gt) => AK = AH => A nằm trên đường chung trực của HK

=> AO là đường trung trực của tam giác cân AHK => AO là đừng phân giác của \(\widehat{BAC}\)

27 tháng 1 2019

hình vẽ và GT KL

12 tháng 2 2016

a) Vì AB=AC nên tam giác ABC cân tại A=> góc B= góc ACB

Mà góc ACB= gốc ICE ( hai góc đối đỉnh) nên góc B= góc ICE 

Xét tam giác BDH và tam giác CEI có:

góc BHD= góc CIE= 90 độ

BD=CE

góc B= góc ICE

=> tam giác BDH= tam giác CEI ( cạnh huyền- góc nhọn)

=> DH=EI

b) Vị gốc DHO= goc OIE ( hai góc so le trong) nền ĐH//IE

=> goc HDO= gốc OEI ( hai góc so le trong)

Xét tam giác HDO và tam giác IEO co:

goc DHO= goc EIO= 90 do 

DH=EI

goc HDO= goc IEO

=> tam giac HDO= tam giac IEO ( g. c. g)

=> HO=IO

=> O la trung diem cua doan thang HI

 

 

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau