Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://hoc24.vn/cau-hoi/.4762222558882
-Bạn chỉ cần thay đổi một chút thôi.
Trong hình thang cân ABCD (AB//CD) đặt m là sđ góc D (m<180 độ ) thì:D=C=m và A=B=180 độ-m
Tam giác ABD cân tại A =>^ABD=^ADB
AB//CD tạo với cát tuyến BD 2 góc so le trong ^ABD=^CDB
Suy ra ^ADB=^CDB,lại có tia DB nằm giữa 2 tia DA và DC nên tia DB là tia phân giác ^ADC=m độ
Vậy ^ABD= (1/2).m
Tam giác BCD cân tại D =>^DBC=^DCB=m độ
Tia BD nằm giữa 2 tia BA,BC nên ^ABC=^ABD+^DBC=(1/2).m+m (độ)
=(3/2).m (độ)
Mà ^ABC=180-m (độ),nên (3/2).m(độ)=180-m(độ)
hay 5/2.m=180 độ => m=360độ:5=72 độ
và 180 độ-m=108 độ
Trả lời : Trong hình thang cân ABCD kể trên,sđ 2 góc nhọn C và D là 72 độ,sđ 2 góc còn lại là 108 độ
Gọi M là giao điểm của AE và CF
ADFE là hình bình hành nên ^ADF = ^AEF (hai góc đối)
Suy ra ^BDF = ^FEC
Xét \(\Delta\)BDF và \(\Delta\)FEC có:
BD = FE (cùng bằng AD)
^BDF = ^FEC (cmt)
DF = EC ( cùng bằng AE)
Do đó \(\Delta\)BDF = \(\Delta\)FEC (c.g.c) suy ra BF = CF (1) và ^BFD = ^FCE
Mặt khác ^AMC = ^DFC (do DF // AE)
^AMC = ^MEC + ^FCE = 600 + ^FCE và ^DFC = ^BFC + ^BFD
Do đó ^BFC = 600 (2)
Từ (1) và 2) suy ra \(\Delta\)FBC đều (đpcm)