Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

nếu \(a\perp b\) và b//c thì ta có : \(a\perp c\)
vậy chọn đáp án B

a) vì x và y tỷ lệ nghịch voeis nhau nên ta có công thức: x=a/y
=> 4=a/10
=>a=4x10
=>a=40
b) y=40/x
c) nếu x=5 => y=40/5=>y=8
nếu x= -8=> y=40/-8=>y=-5
HT

A B C D E K F
a, K;F là trung điểm của BD; BC (gt)
=> FK là đtb của tg BDC
=> FK // DC
mà DC // AB do ABCD là hình thang
=> FK//AB
b, K;E là trung điểm của BD; AD => KE là đtb của tg ABD
=> KE = 1/2 AB VÀ KE // AB
có AB = 4
=> ke = 2 cm
c, có KE // AB mà KF // AB
=> E;K;F thẳng hàng (tiên đề ơ clit)

B C A M N H K O
a) Tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét tam giác ABM và tam giác ACN có:
AB = AC
MB = NC
\(\widehat{ABM}=\widehat{ACN}\)
\(\Rightarrow\Delta ABM=\Delta ACN\left(c-g-c\right)\)
b) Do \(\Delta ABM=\Delta ACN\Rightarrow\widehat{BAH}=\widehat{CAK}\) (Hai góc tương ứng)
Xét tam giác vuông AHB và AKC có:
AB = AC (gt)
\(\widehat{BAH}=\widehat{CAK}\)
\(\Rightarrow\Delta AHB=\Delta AKC\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AH=AK\)
c) Ta có \(\Delta AHB=\Delta AKC\Rightarrow HB=KC\)
Xét tam giác vuông AHO và AKO có:
AH = AK
AO chung
\(\Rightarrow\Delta AHO=\Delta AKO\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HO=KO\)
Mà HB = CK nên OB = OH - HB = OK - CK = OC
Vậy nên tam giác OBC cân tại O.
A B C H K D 1 1 2 2
a) Xét \(\Delta KAC\)và \(\Delta HAB\)có:
\(\widehat{A}\)chung
\(AC=AB\)(vì \(\Delta ABC\)cân tại A)
\(\widehat{AKC}=\widehat{AHB}\left(=90^0\right)\)
\(\Rightarrow\Delta KAC=\Delta HAB\left(g.c.g\right)\)
\(\Rightarrow CK=BH\)(2 cạnh tương ứng) (điều phải chứng minh)
b) \(\Delta KAC=\Delta HAB\)(theo câu a))
\(\Rightarrow KA=HA\)(2 cạnh tương ứng)
\(\Rightarrow\Delta AHK\)cân tại A (điều phải chứng minh)
Lại \(\Delta KAC=\Delta HAB\)(theo câu a))
\(\Rightarrow\widehat{C_1}=\widehat{B_1}\)(2 góc tương ứng)
Ta có: \(\widehat{ABC}=\widehat{ACB}\)(vì \(\Delta ABC\)cân tại A)
Mà \(\widehat{B_1}+\widehat{B_2}=\widehat{ABC};\widehat{C_1}+\widehat{C_2}=\widehat{ACB}\)
\(\Rightarrow\widehat{B_1}+\widehat{B_2}=\widehat{C_1}+\widehat{C_2}\)
Mà \(\widehat{B_1}=\widehat{C_1}\)(chứng minh trên)
\(\Rightarrow\widehat{B_2}=\widehat{C_2}\)\(\Rightarrow\Delta DBC\)cân tại D (điều phải chứng minh)