K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Kẻ đường cao AK. 
- ΔABC cân tại A có đường cao AH đồng thời là đường trung tuyến nên BK = CK = BC/2 
- Xét ΔAKC và ΔBHC có : 
Góc AKC = góc BHC = 90⁰ (AK, BH là đường cao trong ΔABC) 
Góc C chung 
Vậy ΔAKC đồng dạng với ΔBHC (g.g.) 
⇨ AC/BC = KC/HC 
⇔ AB/BC = BC/2HC (AB = AC do ΔABC cân tại A, KC = BC/2 cmt) 
⇔ 2AB.HC = BC² (tỉ lệ thức : ngoại tỉ bằng trung tỉ) 
⇔ 1/HC = 2AB/BC² 
⇔ AB/HC = 2AB²/BC² (nhân AB vào 2 vế) 
⇔ AC/HC = 2(AB/BC)² (AB = AC) 
⇔ (AH + HC)/HC = 2(AB/BC)² 
⇔ AH/HC + 1 = 2(AB/BC)² 
⇔ AH/HC = 2(AB/BC)² - 1 (điều cần chứng minh) 

20 tháng 8 2020

Gọi E là điểm đối xứng của C qua A

=> \(\Delta\)BCE vuông tại E => \(HC=\frac{BC^2}{CE}=\frac{BC^2}{2AC}\)

\(AH=AC-HC=AC-\frac{BC^2}{2AC}=\frac{2AC^2-BC^2}{2AC}\)

\(\Rightarrow\frac{AH}{HC}=2\left(\frac{AC}{BC}\right)^2-1\)

5 tháng 8 2019

a) Xét 2 tam giác vuông DHC và FBC có: ^HCD chung => \(\Delta DHC~\Delta FBC\)

=> \(\frac{CD}{CF}=\frac{CH}{BC}\) => \(CH.CF=BC.CD\) (1) 

tương tự với 2 tam giác vuông DBH và EBC có: ^EBC chung => \(\Delta DBH~\Delta EBC\)

=> \(\frac{BD}{BE}=\frac{BH}{BC}\) => \(BH.BE=BC.BD\) (2) 

(1) và (2) => \(CH.CF+BH.BE=BC\left(BD+CD\right)=BC^2\)

b) CM tương tự câu a), ta cũng có: \(AH.AD+BH.BE=AB^2;AH.AD+CH.CF=AC^2\)

cộng lại ta có đpcm 

13 tháng 11 2018

cần giải gấp