Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK
a. Áp dụng định lý pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
\(C_{ABC}=6+8+10=24cm\)
b. xét tam giác vuông ABD và tam giác vuông BDM, có:
B : góc chung
AD: cạnh chung
Vậy tam giác vuông ABD = tam giác vuông BDM ( cạnh huyền - góc nhọn )
a) Xét hai tam giác vuông ABD và ACE có:
AB = AC (GT)
\(\widehat{BAC}:chung\)
=> ABD = ACE (c.h - g.n)
b) Ta có: ΔABC cân tại A có AH là đường cao
=> AH là đường trung tuyến của BC
=> H là trung điểm của BC
=> BH = CH = BC : 2 (1)
ΔDBC vuông tại D có DH là đường trung tuyến của BC
=> DH là đường trung tuyến ứng vs cạnh huyền
=> DH = BC : 2 (2)
Từ (1) và (2) => CH = DH
=> Tam giác HDC cân tại H
c/ Xét 2 tam giác vuông ΔHDM và ΔHCM ta có:
Cạnh huyền DH = CH (cmt)
HM: chung
=> ΔHDM = ΔHCM (c.h - c.g.v)
=> DM = CM (2 cạnh tương ứng)
d/ Đang suy nghĩ ạ :((
Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh
Câu b ) - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )
=> Góc B1 = góc C1 ( 2 góc tương ứng )
- Vì tam giác ABC là tam giác cân => góc B = góc C
Ta có góc B1 + góc B2 = góc C1 + C2
=> Góc B2 = góc C2
- Vậy tam giác HBC là tam giác cân
Câu c )
a) Xét hai tam giác vuông ABD và ACE có:
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{A}\): góc chung
Vậy \(\Delta ABD=\Delta ACE\left(ch-gn\right)\)
b) \(\Delta ABC\) cân tại A
\(\Rightarrow\) AH là đường cao đồng thời là đường trung tuyến của BC
hay HB = HC
\(\Delta BDC\) có DH là đường trung tuyến ứng với cạnh huyền BC
\(\Rightarrow\) DH = HB = HC = \(\dfrac{BC}{2}\)
\(\Rightarrow\) \(\Delta HDC\) cân tại H.
c) \(\Delta HDC\) cân tại H có HM là đường cao đồng thời là đường trung tuyến
Vậy DM = MC (đpcm).
DM = MC nhé . Có cần giải không ?