Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh
Câu b ) - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )
=> Góc B1 = góc C1 ( 2 góc tương ứng )
- Vì tam giác ABC là tam giác cân => góc B = góc C
Ta có góc B1 + góc B2 = góc C1 + C2
=> Góc B2 = góc C2
- Vậy tam giác HBC là tam giác cân
Câu c )
a, Xét \(\Delta\)ABD và \(\Delta\)ACE có:
AB=AC( tam giác ABC cân tại A)
\(\widehat{A}\)chung
\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE( CH-GN)
b, vì \(\Delta\)ABD=\(\Delta\)ACE\(\Rightarrow\)AD=AE\(\Rightarrow\)tam giác AED cân tại A
Cm: Xét t/giác ABD và t/giác ACE
có góc CEA = góc BDA = 900 (gt)
AB = AC (gt)
góc A : chung
=> t/giác ABD = t/giác ACE (ch - gn)
b) Ta có: t/giác ABD = t/giác ACE (cmt)
=> AE = AD (hai cạnh tương ứng)
=> t/giác AED là t/giác cân tại A
c) Gọi I là giao điểm của AH và ED.
Ta có: AE + EB = AB
AD + DC = AC
và AB = AC (gt); AE = AD (cmt)
=> EB = DC
Do t/giác ABD = t/giác ACE (cm câu a)
=> góc ABD = góc ACE (hai cạnh tương ứng)
Xét t/giác EHB và t/giác DHC
có góc BEH = góc HDC (gt)
EB = DC (cmt)
góc EBH = góc HCD (cmt)
=> t/giác BEH = t/giác DHC (g.c.g)
=> EH = DH (hai cạnh tương ứng)
Xét t/giác AEH và t/giác ADH
có AE = AD (cmt)
góc AEH = góc ADH (gt)
EH = DH (cmt)
=> t/giác AEH = t/giác ADH (c.g.c)
=> góc EAH = góc DAH (hai góc tương ứng)
Xét t/giác AEI và t/giác ADI
có góc EAI = góc DAI (cmt)
AE = AD (cmt)
góc AEI = góc ADI (vì t/giác AED cân)
=> t/giác AEI = t/giác ADI (g.c.g)
=> EI = HD (hai cạnh tương ứng) (1)
=> góc AIE = góc AID (hai góc tương ứng)
Mà góc AEI + góc AID = 1800 (kề bù)
=> 2.góc AEI = 1800
=> góc AEI = 1800 : 2
=> góc AEI = 900
=> AI \(\perp\)ED (2)
Từ (1) và (2) suy ra AI là đường trung trực của ED hay AH là đường trung trực của ED
d) Sửa đề Cm : góc ECB = góc DKC
Ta có: góc BDC + góc KDC = 1800
=> góc KDC = 1800 - góc BDC = 1800 - 900 = 900
Xét t/giác BDC và t/giác KDC
có BD = DK (gt)
góc BDC = góc KDC = 900 (Cmt)
DC : chung
=> t/giác BDC = t/giác KDC (c.g.c)
=> góc K = góc DBC (hai góc tương ứng) (3)
Xét t/giác BEC và t/giác CDB
có góc BDC = góc CDB = 900 (gt)
BC : chung
góc B = góc C (vì t/giác ABC cân)
=> t/giác BEC = t/giác CDB (ch -gn)
=> góc BDE = góc DBC (hai góc tương ứng) (4)
Từ (3) và (4) suy ra góc ECB = góc DKC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
a) Xét \(\Delta ABC\)và\(\Delta ADE\):
AB=AD(gt)
\(\widehat{BAC}=\widehat{DAE}=90^o\)
AC=AE(gt)
=> \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)
=> BC=DE ( 2 cạnh tương ứng)
=> Đpcm
b) Ta có \(\Delta ABD\)vuông cân tại A
=> \(\widehat{ABD}=\widehat{ADB}=\frac{\widehat{DAB}}{2}=\frac{90^o}{2}=45^o\)
\(\Delta AEC\)vuông cân tại A
=> \(\widehat{AEC}=\widehat{ACE}=\frac{\widehat{EAC}}{2}=\frac{90^o}{2}=45^o\)
=> \(\widehat{BDA}=\widehat{ECA}=45^o\)
Mà 2 góc này ở vị trí so le trong
=> BD//CE
=> Đpcm
c) Sửa đề: Kẻ dường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông góc với MC cắt BC tại N. Chứng minh rằng CA vuông góc với NM
Gọi giao điể của NA và MC là I
Xét \(\Delta NMC\)có:
\(\hept{\begin{cases}NI\perp MC\\MH\perp NC\end{cases}}\)
Mà 2 đường cao này cắt nhau tại A
=> A là trực tâm của \(\Delta MNC\)
=> \(CA\perp NM\)
=> Đpcm
d) Ta có: \(\widehat{ADM}=\widehat{ABC}\left(\Delta ADE=\Delta ABC\right)\)
=> \(\widehat{ADM}+\widehat{AED}=\widehat{ABC}+\widehat{BAH}=90^o\)
=> \(\widehat{AED}=\widehat{BAH}\) Mà \(\widehat{BAH}=\widehat{MAE}\left(đđ\right)\)
=> \(\widehat{AED}=\widehat{MAE}\)
=> \(\Delta MAE\)cân tại M
=> MA=ME (1)
Lại có: \(\widehat{AED}=\widehat{ACB}\Rightarrow\widehat{AED}+\widehat{ADE}=\widehat{ACB}+\widehat{CAH}=90^o\)
=> \(\widehat{ADE}=\widehat{CAH}\)
Mà \(\widehat{CAH}=\widehat{DAM}\left(đđ\right)\)
=> \(\widehat{ADE}=\widehat{DAM}\)
=> \(\Delta DAM\)cân tại M
=> MD=MA (2)
Từ (1) và (2)
=> MA=MD=ME
=> \(MA=\frac{1}{2}DE\)
=> Đpcm
P/s: Thật ra định làm tắt cho bạn tự suy luận, nhưng sợ bạn ko hiểu nên thoi, mỏi cả tay:>>>
Trước khi làm mình có lưu ý là mình sử dụng H luôn cho câu b nhé, dù ở câu c mới xuất hiện.
a/ Xét \(\Delta ABD\)vuông tại \(D\)có:
\(AD^2+BD^2=AB^2\left(pytago\right)\)
\(AD^2+8^2=10^2\)
\(AD^2=10^2-8^2=100-64=36\)
\(\Rightarrow AD=\sqrt{36}=6\left(cm\right)\)
b/ Xét tam giác ABC có 2 đường cao BD;CE cắt nhau tại H => H là trực tâm tam giác ABC
=> AH là đường cao thứ 3 (Vậy thôi đủ xài)
=> AH cũng là đường phân giác vì tam giác ABC cân tại A
Xét \(\Delta AEH\)và \(\Delta ADH\)có:
\(\hept{\begin{cases}AH:chung\\\widehat{EAH}=\widehat{DAH}\left(cmt\right)\\\widehat{AEH}=\widehat{ADH}=90^0\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AEH=\Delta ADH\left(g.c.g\right)\)
\(\Rightarrow AE=AD\)
Xét \(\Delta AEC\)và \(\Delta ABD\)có:
\(\hept{\begin{cases}AE=AD\left(cmt\right)\\\widehat{AEC}=\widehat{ADB}=90^0\left(gt\right)\\\widehat{BAC}:chung\end{cases}}\)
\(\Rightarrow\Delta AEC=\Delta ADB\left(g.c.g\right)\)
\(\Rightarrow CE=BD\)
c/ (đã chứng minh câu b)
d/ Vì tam giác AEC = tam giác ADB
=> \(\widehat{ACE}=\widehat{ABD}\)
Mà: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{DBC}=\widehat{ECB}\)
\(\Rightarrow\Delta BHC\)cân tại \(H\)
e/ Xét \(\Delta AHD\)vuông tại \(H\)có:
\(AD^2+HD^2=AH^2\left(pytago\right)\)
\(6^2+5^2=AH^2\)(vì 36 + 25 = 61)
\(\Rightarrow AH=\sqrt{61}\approx7,8\left(cm\right)\)
a) Xét hai tam giác vuông ABD và ACE có:
AB = AC (GT)
\(\widehat{BAC}:chung\)
=> ABD = ACE (c.h - g.n)
b) Ta có: ΔABC cân tại A có AH là đường cao
=> AH là đường trung tuyến của BC
=> H là trung điểm của BC
=> BH = CH = BC : 2 (1)
ΔDBC vuông tại D có DH là đường trung tuyến của BC
=> DH là đường trung tuyến ứng vs cạnh huyền
=> DH = BC : 2 (2)
Từ (1) và (2) => CH = DH
=> Tam giác HDC cân tại H
c/ Xét 2 tam giác vuông ΔHDM và ΔHCM ta có:
Cạnh huyền DH = CH (cmt)
HM: chung
=> ΔHDM = ΔHCM (c.h - c.g.v)
=> DM = CM (2 cạnh tương ứng)
d/ Đang suy nghĩ ạ :((
vứt hình đây t nghĩ choooooooooo :))