K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

a) Xét \(\Delta\)ABC cân tại A có: ^A = 100\(^o\)

=> ^B = ^C = ( 180\(^o\)- ^A) : 2 = ( 180\(^o\)- 100\(^o\)) : 2 = 40\(^o\)

b) Gọi O là giao điểm của AE và BC 

Có: ^BAC = 100\(^o\); ^BAO = ^DAE = 60\(^o\)

=> ^OAC = ^BAC - BAO = 100\(^o\)- 60 \(^o\)= 40 \(^o\)

=> \(\Delta\)AOC cân tại O ( 1)

Ta lại có: AE = AD ( \(\Delta\)ADE đều ); DA = BC ( giả thiết )

=> AE = BC 

Và AO = OC  ( theo (1))

=> AE - AO = BC - OC

=> OB = OE (2)

Xét \(\Delta\)AOB và \(\Delta\)COE có:

OA = OC ( theo (1)  )

OB = OE ( theo (2) )

^AOB = ^COE ( đối đỉnh )

=>  \(\Delta\)AOB =  \(\Delta\)COE ( c.g.c)

=> AB = CE 

Lại có: AB = AC (  \(\Delta\)ABC cân tại A )

=> AC = CE ( 3)

Xét  \(\Delta\)ADC và \(\Delta\)EDC có:

AB = DE (  \(\Delta\)ADE đều )

CA = CE ( theo 3)

DC chung 

=>  \(\Delta\)ADC và \(\Delta\)EDC ( c.c.c)

=> ^ADC = ^EDC 

Mà ^ADC + ^EDC = ^ADE = 60\(^o\)

=> ^ADC = 30\(^o\)

=> ^ADO = 30 \(^o\)

Xét \(\Delta\) ADO có: ^ADO + ^DAO = 30\(^o\)+ 60\(^o\)=90\(^o\)

=> ^AOD = 90\(^o\)

=> DC vuông AE

10 tháng 1 2017

làm kiểu j vậy

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1
Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

a) Có : \(\widehat{ABC}+\widehat{ABD}=\widehat{ACB}+\widehat{ACE}=180^o\)

Mà : \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

-Xét tam giác ABD và ACE có :

AB=AC (tam giác ABC cân tại A)

BD=CE(đều bằng AB)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

=> Tam giác ABD=ACE(c.g.c)

=> AD=AE

=> Tam giác ADE cân tại A(đccm)

b) Tam giác ABC cân tại A có : \(\widehat{BAC}=40^o\)

\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-40^o}{2}=70^o\)

- Có : \(\widehat{ABC}+\widehat{ABD}=180^o\)

\(\Rightarrow70^o+\widehat{ABD}=180^o\)

\(\Rightarrow\widehat{ABD}=110^o\)

- Xét tam giác ABD cân tại B(BD=AB) có :

\(\widehat{ABD}+\widehat{BAD}+\widehat{ ADB}=180^o\)

\(\Rightarrow110^o+\widehat{BAD}+\widehat{ADB}=180^o\)

\(\Rightarrow\widehat{BAD}=\widehat{BDA}=\frac{180^o-110^o}{2}=35^o\)

- Tương tự, ta có : \(\widehat{AEC}=\widehat{CAE}=35^o\)

- Có : \(\widehat{DAE}=\widehat{DAB} +\widehat{CAE}+\widehat{BAC}=35^o+35^o+40^o=110^o\)

Vậy : \(\widehat{D}=\widehat{E}=35^o,\widehat{DAE}=110^o\)

c) Tam giác ABD cân tại B(AB=BD) có \(BH\perp DA\)

=> HD=HA(t/c đg TT,PG,cao,.. của tam giác cân)

Tương tự có AK=KE

Mà : AD=AE(tam giác ADE cân tại A)

=> AH=AK

-Xét tam giác AHO và AKO, có :

AH=AK(cmt)

\(\widehat{AHO}=\widehat{AKO}=90^o\)

AO-cạnh chung

=> Tam giác AHO=AKO(cạnh huyền-cạnh góc vuông)

=> HO=OK(đccm)

d) Do tam giác AHO=AKO(cmt)

=> \(\widehat{HAO}=\widehat{KAO}\)

\(\Rightarrow\widehat{HAB}+\widehat{BAO}=\widehat{KAC}+\widehat{CAO}\)

Mà : \(\widehat{HAB}=\widehat{KAC}=35^o\left(cmt\right)\)

Mà :\(\widehat{BAO}+\widehat{CAO}=\widehat{BAC}\)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}=\frac{\widehat{BAC}}{2}=\frac{40}{2}=20^o\)

- Gọi giao điểm của AO và BC là I

Xét tam giác AIB có : \(\widehat{BAI}+\widehat{ABI}+\widehat{AIB}=180^o\)

\(\Rightarrow20^o+70^o+\widehat{AIB}=180^o\)

\(\Rightarrow90^o+\widehat{AIB}=180^o\)

\(\Rightarrow\widehat{AIB}=90^o\)

\(\Rightarrow AI\perp BC\left(đccm\right)\)

#H

29 tháng 7 2017

ahihi DồKết quả hình ảnh cho ban làm rớt nà     ahihi đồ chó

30 tháng 7 2017

bn có bị j ko z

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Dođó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK và AH=AK

Xét ΔADE có 

AH/AD=AK/AE

Do đó: HK//DE

hay HK//BC

c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)

\(\widehat{OCB}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{KCE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

10 tháng 1 2022

thanks bạn nha. nhưng mà bạn có làm đc phần d khồng?????????????????