Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo
a) Xét 2 tam giác vuông ΔAHB và ΔAHC có:
AH chung
AB = AC (GT)
⇒ Δ AHB = ΔAHC (cạnh huyền - cạnh góc vuông)
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ˆBAH=ˆCAHBAH^=CAH^ ( 2 góc tương ứng) (1)
Ta lại có: HD // AC ( GT )
⇒ ˆDHA=ˆCAHDHA^=CAH^ (2 góc so le trong) (2)
Từ (1) và (2) => ˆDHA=ˆBAHDHA^=BAH^
Hay: ˆDHA=ˆDAHDHA^=DAH^
=> ΔADH cân tại D
=> AD = DH
c) Ta có: ΔABH = ΔACH (câu a)
⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến ΔABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB = ∠ACB ( 2 góc đồng vị )
Mà ΔABC cân tại A (GT)
⇒ ∠ABC= ∠ACB
⇒ ∠DHB = ∠DBH
=> ΔDHB cân tại D
⇒ DB =DH
Lại có AD = DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến ΔABC (4)
Từ (3), (4) ta có: AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
Mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng
1: Xét ΔBDH có \(\widehat{DBH}=\widehat{DHB}\left(=\widehat{ACB}\right)\)
nên ΔBDH cân tại D
Xét ΔABC có
H là trung điểm của BC
HD//AC
Do đó: D là trung điểm của AB
2: Xét ΔABC có
CD là đường trung tuyến
AH là đường trung tuyến
CD cắt AH tại G
Do đó: G là trọng tâm của ΔABC
=>BG là đường trung tuyến ứng với cạnh AC
mà E là trung điểm của AC
nên B,G,E thẳng hàng
tham khảo ở đây : Câu hỏi của Trần Ngọc Mai Anh - Toán lớp 7 - Học toán với OnlineMath
a: Xét ΔAHB vuông tại H và ΔAHC vuông tạiH có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Sửa đề: song song với AC
Xét ΔABC có
H la trung điểm của BC
HD//AC
=>D là trung điểm của AB
ΔAHB vuông tại H
mà HD là trung tuyến
nên HD=AD
c: Xét ΔABC có
CD,AH là trung tuyến
CD cắt AH tại G
=>G là trọng tâm
=>B,G,E thẳng hàng
a) +Xét tg ABH và tg ACH có
AB=AC ( tg ABC cân tại A)
góc B= góc C (tg ABC cân tại A)
góc AHB= góc AHC=900 (AH là đường cao )
Suy ra: tg ABH= tg ACH
b)+ tg ABH=tg ACH (câu a) => góc BAH= góc CAH (2 góc tương ứng) (1)
+ Ta có: DH // AC (GT)
=> góc CAH= góc DHA ( 2 góc so le trong ) (2)
+ Từ (1) và (2) => góc BAH= góc DHA hay góc DAH= góc DHA
Suy ra: tg HDA cân tại D => AD=AH
c) +HD// AC => góc DHB= góc ACH ( 2 góc đồng vị ) hay góc DHB= góc ACB
Mà góc ABC= góc ACB (tg ABC cân tại A)
Suy ra: góc DHB= góc ACB => tg DBH cân tại D
=> DB=DH. Mặt khác: AD = DH (câu b)
Suy ra: DB=DA => CD là đường trung tuyến của tg ABC (3)
+ tg ABH= tg ACH (câu a )=> HB=HC (2 cạnh tương ứng ) => AH là đường trung tuyến của tg ABC (4)
+Từ (3) và (4) => G là trọng tâm của tg ABC (CD cắt AH tại G)
Mà BE là đường trung tuyến của tg ABC=> BE đi qua G
Suy ra: B, E, G thẳng hàng
d) mk bt lm nhưng lại k bt cách trình bày thông cảm nha ^^
câu d tương đương với
CM cvi tam giác ABC > AH+3x 2/3 BE = AH+BE+CD
Tương đương với bài toán chưngs minh độ dài 3 đường trung tuyến của 1 tam giác nhỏ hơn chu vi của tam giác đó
bài toán đấy b có thể tham khảo quyển nâng cao pt tập 2