Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh huyền BC
nên AH là đường trung tuyến ứng với cạnh BC
mà AG là đường trung tuyến ứng với cạnh BC
và AG,AH có điểm chung là A
nên A,G,H thẳng hàng
A B C 5 6 7 M D E O G
a) Theo tính chất đường phân giác ta có:
\(\frac{AD}{DC}=\frac{BA}{BC}\) => \(\frac{AD}{AD+DC}=\frac{BA}{BA+BC}\) (tính chất dãy tỉ số bằng nhau)
Suy ra: \(\frac{AD}{AC}=\frac{BA}{BA+BC}\) => \(\frac{AD}{6}=\frac{5}{5+7}\) => AD = 2,5.
b) Xét tam giác ABD có AO là phân giác. Suy ra: \(\frac{OB}{OD}=\frac{AB}{AD}=\frac{5}{2,5}=2\)
Xét tam giác BDM có: \(\frac{OB}{OD}=2\), \(\frac{GB}{GM}=2\) (theo tính chất trọng tâm).
Suy ra \(\frac{OB}{OD}=\frac{GB}{GM}\) (cùng bằng 2) => OG // DM (theo định lý Ta-let đảo)
Vậy OG//AC
a)Hai tam giác vuông \(\Delta AHC\approx\Delta BKC\)vì có chung góc nhọn C
b) Vì tam giác AHC đồng dạng tam giác BKC nên
\(\frac{AH}{BK}=\frac{HC}{KC}=\frac{AC}{BC}=\frac{4}{3}\)
Theo định lý Pytago ta có
\(AH=\sqrt{8^2-3^2}=\sqrt{55}\)
\(\frac{AH}{BK}=\frac{\sqrt{55}}{BK}=\frac{4}{3}\)
\(\Rightarrow BK=\frac{3\sqrt{55}}{4}\)
Theo Pytago ta có
\(KC=\sqrt{6^2-\left(\frac{3\sqrt{55}}{4}\right)^2}=\frac{9}{4}\left(cm\right)\)
\(KA=8-\frac{9}{4}=\frac{23}{4}\left(cm\right)\)
A B C H E F
a) Xét hai tam giác ABC và HBA có:
\(\widehat{BAC}=\widehat{BHA=1V}\)
\(\widehat{ABC}\left(\widehat{HBA}\right)\): góc chung
Vậy \(\Delta\)ABC ~ \(\Delta\)HBA.
b) Ta có:
AB2 = BH . BC (vì \(\Delta\)ABC ~ \(\Delta\)HBA.)
= 4.13
= 52
\(\Rightarrow\)AB = \(\sqrt{52}=\)\(2\sqrt{13}\)(cm)
Vì \(\Delta\)ABH vuông tại H
\(\Rightarrow\)AH2 = AB2 - BH2
= 36
\(\Rightarrow\)AH = 6(cm)
c) Xét hai tam giác AHE và CHF có:
\(\widehat{HAE}=\widehat{HCF}\)(cùng phụ với \(\widehat{HAC}\))
\(\widehat{AHE}=\widehat{CHF}\) ( cùng phụ với \(\widehat{AHF}\))
Vậy \(\Delta\)AHE ~ \(\Delta\)CHF.
\(\Rightarrow\frac{AE}{CF}=\frac{AH}{CH}\Rightarrow AE.CH=AH.CF\)(đpcm)
d)
trực tâm ở cạnh nào hay góc nào bạn?
có trực tâm chính xác sẽ làm dễ hơn