Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(AE=BE=\dfrac{AB}{2}\)(E là trung điểm của AB)
\(AF=CF=\dfrac{AC}{2}\)(F là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AE=BE=AF=CF
Xét ΔABF và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{BAF}\) chung
AF=AE(cmt)
Do đó: ΔABF=ΔACE(c-g-c)
Suy ra: BF=CE(Hai cạnh tương ứng)
, M là trung điểm của BC ⇒ MB = MC
Xét ΔMBA và ΔMCE có:
MB = MC
\(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)
MA = ME
=> ΔMBA = ΔMCE (c.g.c) (đpcm)
b, Xét 2 tam giác vuông ΔBHA và ΔBHF có:
BH chung; \(\widehat{ABH}=\widehat{FBH}\) (do góc ABx nhận BC là tia phân giác)
=> ΔBHA = ΔBHF (cạnh góc vuông - góc nhọn)
=> AB = BF mà AB = CE (do ΔMBA = ΔMCE)
=> CE = BF (đpcm)
c, Ta thấy: \(\widehat{FBC}=\widehat{ABC}=\widehat{ECB}\)
=> ΔKBC cân tại K mà KM là trung tuyến
=> KM là phân giác của \(\widehat{BKC}\) (1)
ΔKBC cân tại K ⇒ KB = KC mà BF = CE
⇒ KB - BF = KC - CE ⇒ KF = KE
Ta chứng minh được ΔBEK = ΔCFK (c.g.c)
=> \(\widehat{EBK}=\widehat{FCK}\)
=.> ΔBIF = ΔCIE (g.c.g)
=> IF = IE ⇒ ΔIFK = ΔIEK (c.c.c)
\(\Rightarrow\widehat{IKF}=\widehat{IKF}\)
⇒ KI là phân giác của ^BKC (2)
Từ (1) và (2) suy ra M, I, K thẳng hàng (đpcm)