K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

A B C H D K

a)) Xét tam giác ABC cân tại A có AH là đường cao => AH cũng là đường trung tuyến 

=> BH = HC

Xét tam giác BCD có: AH // BD (vì cùng vuông góc với BC) và H là trung điểm của BC

=> AH là đường trung bình ==> \(AH=\frac{1}{2}BD\)=> BD = 2AH

b) Xét tam giác BCD vuông tịa B có BK là đường cao

=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\) (hệ thức lượng trong tam giác vuông)

=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{\left(2AH\right)^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)

2 tháng 7 2021

a) Do AH là đường cao trong tam giác ABC cân tại A

\(\Rightarrow\) AH cũng là đường trung tuyến trong tam giác ABC

Suy ra H là trung điểm của BC.

mà AH//BD (vì cùng vuông góc với BC)

\(\Rightarrow\) AH là đường trung bình của tam giác DBC

\(\Rightarrow\) 2AH=BD

b)Áp dụng hệ thức trong tam giác vuông có 

\(\dfrac{1}{BK^2}=\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{1}{\left(2AH\right)^2}+\dfrac{1}{BC^2}\) \(=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Vậy...

15 tháng 8 2021

trinhf bày rõ hơn được không bạn ơii

 

Tham khảo:

20 tháng 10 2015

tick cho mình đi rồi mình giải câu c

25 tháng 10 2021

Ủa rồi cậu đã giải câu c) chưa?? 😃. Đã 4 năm rồi còn chưa thực hiện lời hứa =)))

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Hình vẽ:

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

a) Vì tam giác $ABC$ cân tại $A$ nên đường cao $AH$ đồng thời là đường trung tuyến. Do đó $H$ là trung điểm của $BC$

$AH\perp BC, BD\perp BC\Rightarrow AH\parallel BC$. Áp dụng định lý Talet:

$\frac{AH}{BD}=\frac{CH}{CB}=\frac{1}{2}$ (do $H$ là trung điểm $BC$)

$\Rightarrow BD=2AH$ (đpcm)

b)

Xét tam giác vuông tại $B$ là $BDC$ có đường cao $BK$. Áp dụng công thức hệ thức lượng trong tam giác vuông ta có:

$\frac{1}{BK^2}=\frac{1}{BD^2}+\frac{1}{BC^2}$
Mà theo phần a thì $BD=2AH\Rightarrow BD^2=4AH^2$

$\Rightarrow \frac{1}{BK^2}=\frac{1}{4AH^2}+\frac{1}{BC^2}$ (đpcm)

5 tháng 7 2017

CHO MÌNH SỬA LẠI CÂU 2: Biết chu vi \(\Delta ABH=30cm\)và chu vi \(\Delta ACH=10cm\).Tính chu vi \(\Delta ABC\)

17 tháng 8 2018

Hỏi đáp Toán