Cho tam giác ABC cân tại A có cạnh BC = 12 cm. Gọi I là trung điểm của AB, K là trung điểm củ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

a) Ta có  :

P là trung điểm AB

Q là trung điểm AC

 PQ là đường trung bình tam giác ABC

Xét tứ giác BPQC , ta có :

PQ//BC( do PQ là đường trung bình tam giác ABC)

BPQC là hình thang (dấu hiệu nhận biết hình thang)

b)Ta có :

Q là trung điểm PE

Q là trung điểm AC

 Q là trung điểm hai đường chéo của tứ giác AECP

Suy ra tứ giác AECP là hình bình hành 

14 tháng 9 2021

a) Ta có  :

P là trung điểm AB

Q là trung điểm AC

⇒ PQ là đường trung bình tam giác ABC

Xét tứ giác BPQC , ta có :

PQ//BC( do PQ là đường trung bình tam giác ABC)

⇒BPQC là hình thang (dấu hiệu nhận biết hình thang)

7 tháng 11 2021

a: HI=7,5(cm)

b: Xét tứ giác AHBM có 

I là trung điểm của AB

I là trung điểm của HM

Do đó: AHBM là hình bình hành

mà ˆAHB=900AHB^=900

nên AHBM là hình chữ nhật

HT...

7 tháng 11 2021

Bạn có thể cho mk câu d đc ko??

22 tháng 12 2016

b) Tam giác ABC vuông tại A có:

         \(AB^2+AC^2=BC^2\)(Định lí Py-ta-go)

Thay \(6^2+8^2=BC^2\)

        \(36+64=BC^2\)

 =>  \(BC^2=100\)

 => \(BC=\sqrt{100}=10cm\)

Vì đường trung tuyến Ah ứng với cạnh huyền BC

=> AH = 1/2 BC

=> AH = \(\frac{BC}{2}=\frac{10}{2}=5cm\)

22 tháng 12 2016

a) Tứ giác AHCD có:

IH=ID(gt); IA=IC(gt)

=> Tứ giác AHCD là hình bình hành    (1)

lại có: AH vuông góc với BC(gt)

=> \(\widehat{H}\)\(^{90^0}\)          (2)

Từ (1) và (2) => Tứ giác AHCD là hình chữ nhật

3 tháng 1 2017

Xét \(\Delta\)ABC có: D là trung điểm của AB

M là trung điểm của BC

\(\Rightarrow\)DM là đường trung bình của \(\Delta ABC\)

\(\Rightarrow DM\)//AC hay DM//AE

Ta có : M là trung điểm của BC

E là trung điểm của CA

\(\Rightarrow\)ME là đường trung bình của \(\Delta\)ABC

\(\Rightarrow\)ME//AB hay ME//AD

Xét tứ giác ADME có: DM//AE(cmt)

ME//AD(cmt)

\(\Rightarrow\)ADME là hình bình hành

Nếu \(\Delta\)ABC cân tại A có đường trung tuyến AM

\(\Rightarrow\)AM đồng thời là tia phân giác của \(\widehat{A}\)

Xét hình bình hành ADME có đường chéo AM là tia phân giác của \(\widehat{A}\)(cmt)

\(\Rightarrow\)ADME là hình thoi

Nếu \(\Delta\)ABC vuông tại A

\(\Rightarrow\widehat{A}=90^0\)

Xét hình bình hành ADME có \(\widehat{A}=90^0\)(cmt)

\(\Rightarrow\)ADME là hình chữ nhật

d/ Xét \(\Delta ABC\) vuông tại A, đường trung tuyến AM

\(\Rightarrow AM=\frac{1}{2}BC\)(Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1/2 cạnh huyền)

Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có:

BC2=AB2+AC2

\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Leftrightarrow BC=\sqrt{6^2+8^2}\)

\(\Leftrightarrow BC=10\left(cm\right)\)

Khi đó:AM=\(\frac{1}{2}.BC=\frac{1}{2}.10=5\left(cm\right)\)

Vậy trong trường hợp tam giác ABC vuông tại A, AB=6cm và AC=8cm thì AM=5cm