K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

Xét tam giác BAH

  Có B+BAH=900(vì tam giác BAH vuông tại H)

        500+BAH=900

       =>BAH=900-500

       =>BAH=400

Xét tam giác HAC

   Có C+HAC=900(Tam giác HAC vuông tại H)

         400+HAC= 900

         HAC=900-400

         HAC=500

B)Xét tam giác ABH

     Có AB2 = HB2+AH2(Theo định lý Pi-ta-go)

           AB2=32+42     

           AB2=25=52

           AB=5

     Xét tam giác CAH

        Có AC2=AH2+HC2 (Theo định lý Pi-ta-go)

                     AC2=42+42=32=       

6 tháng 5 2023

a, Xét tam giác ABH và tam giác ACH có:

góc ABH = góc ACH ( tam giác ABC cân tại A)

AH chung

góc BAH = góc CAH ( đường phân giác AH)

=> tam giác ABH = tam giác ACH(g.c.g)

b,Xét tam giác AKH và tam giác AIH có:

góc KAH = góc IAH (đường phân giác AH)

    AH chung

góc HKA = góc HIA = 90 độ

=> tam giác AKH = tam giác AIH(g.c.g)

=> HK = HI ( 2 cạnh tương ứng )

Vì AH là đường phân giác trong tam giác ABC cân tại A

=> AH là đường cao của tam giác ABC => AH vuông với BC

=> AH là đường trung tuyến của tam giác ABC=>BH=CH

Xét tam giác BHK và tam giác CHI có:

góc HBK = góc HCI ( tam giác ABC cân tại A)

  KH = IH( chứng minh trên )

góc BKH = góc CIH = 90 độ

=>tam giác BHK = tam giác CHI(g.c.g)

=>BK=CI(2 cạnh tương ứng)

c,chứng minh j kia bạn 

 

6 tháng 5 2023

c là chứng minh 1/2(KM+NI)<AM

 

21 tháng 3 2022

undefinedundefinedundefined

21 tháng 3 2022

undefinedundefinedundefined

a: AC=4cm

b: Xét ΔAMH vuông tại H và ΔAMN vuông tại N có

AM chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔAMN

Suy ra: MH=MN; AH=AN

hay AM là đường trung trực của NH

c: Xét ΔAHN có AH=AN

nên ΔAHN cân tại A

mà \(\widehat{HAN}=60^0\)

nên ΔAHN đều

5 tháng 2 2018

làm j có tam giác nào cân tại A ( A<90o)

6 tháng 2 2018

a) Xét tam giác vuông ABH và tam giác vuông ACH có:

Cạnh AH chung

AB = AC (gt)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)  (Hai góc tương ứng)

Vậy nên AH là tia phân giác góc BAC.

b) Xét hai tam giác vuông AEH và AFH có:

Cạnh AH chung

\(\widehat{EAH}=\widehat{FAH}\)

\(\Rightarrow\Delta AEH=\Delta AFH\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow HE=HF\)  (Hai cạnh tương ứng)

Suy ra tam giác HEF cân tại E.

c) Dễ thấy \(\Delta ABK=\Delta ACK\left(c-g-c\right)\)

\(\Rightarrow\widehat{AKB}=\widehat{AKC}\)

Lại có \(\widehat{AKC}=\widehat{AHF}\)   (Đồng vị) 

\(\widehat{AHF}=\widehat{AHE}\) (Do \(\Delta AEH=\Delta AFH\) )

\(\Rightarrow\widehat{AKB}=\widehat{AHE}\) hay HE // BK

d) Ta có \(\Delta AHN=\Delta AHM\left(c-g-c\right)\)

\(\Rightarrow\widehat{MAH}=\widehat{NAH}=90^o\)

\(\Rightarrow\widehat{MAN}=180^o\) hay M, N, A thẳng hàng.