Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BAH
Có B+BAH=900(vì tam giác BAH vuông tại H)
500+BAH=900
=>BAH=900-500
=>BAH=400
Xét tam giác HAC
Có C+HAC=900(Tam giác HAC vuông tại H)
400+HAC= 900
HAC=900-400
HAC=500
B)Xét tam giác ABH
Có AB2 = HB2+AH2(Theo định lý Pi-ta-go)
AB2=32+42
AB2=25=52
AB=5
Xét tam giác CAH
Có AC2=AH2+HC2 (Theo định lý Pi-ta-go)
AC2=42+42=32=
a, Xét tam giác ABH và tam giác ACH có:
góc ABH = góc ACH ( tam giác ABC cân tại A)
AH chung
góc BAH = góc CAH ( đường phân giác AH)
=> tam giác ABH = tam giác ACH(g.c.g)
b,Xét tam giác AKH và tam giác AIH có:
góc KAH = góc IAH (đường phân giác AH)
AH chung
góc HKA = góc HIA = 90 độ
=> tam giác AKH = tam giác AIH(g.c.g)
=> HK = HI ( 2 cạnh tương ứng )
Vì AH là đường phân giác trong tam giác ABC cân tại A
=> AH là đường cao của tam giác ABC => AH vuông với BC
=> AH là đường trung tuyến của tam giác ABC=>BH=CH
Xét tam giác BHK và tam giác CHI có:
góc HBK = góc HCI ( tam giác ABC cân tại A)
KH = IH( chứng minh trên )
góc BKH = góc CIH = 90 độ
=>tam giác BHK = tam giác CHI(g.c.g)
=>BK=CI(2 cạnh tương ứng)
c,chứng minh j kia bạn
a: AC=4cm
b: Xét ΔAMH vuông tại H và ΔAMN vuông tại N có
AM chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔAMN
Suy ra: MH=MN; AH=AN
hay AM là đường trung trực của NH
c: Xét ΔAHN có AH=AN
nên ΔAHN cân tại A
mà \(\widehat{HAN}=60^0\)
nên ΔAHN đều
a) Xét tam giác vuông ABH và tam giác vuông ACH có:
Cạnh AH chung
AB = AC (gt)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\) (Hai góc tương ứng)
Vậy nên AH là tia phân giác góc BAC.
b) Xét hai tam giác vuông AEH và AFH có:
Cạnh AH chung
\(\widehat{EAH}=\widehat{FAH}\)
\(\Rightarrow\Delta AEH=\Delta AFH\) (Cạnh huyền - góc nhọn)
\(\Rightarrow HE=HF\) (Hai cạnh tương ứng)
Suy ra tam giác HEF cân tại E.
c) Dễ thấy \(\Delta ABK=\Delta ACK\left(c-g-c\right)\)
\(\Rightarrow\widehat{AKB}=\widehat{AKC}\)
Lại có \(\widehat{AKC}=\widehat{AHF}\) (Đồng vị)
\(\widehat{AHF}=\widehat{AHE}\) (Do \(\Delta AEH=\Delta AFH\) )
\(\Rightarrow\widehat{AKB}=\widehat{AHE}\) hay HE // BK
d) Ta có \(\Delta AHN=\Delta AHM\left(c-g-c\right)\)
\(\Rightarrow\widehat{MAH}=\widehat{NAH}=90^o\)
\(\Rightarrow\widehat{MAN}=180^o\) hay M, N, A thẳng hàng.