Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Hình bạn tự vẽ nhé)
a)
Tứ giác AHCE có:
AD = DC
HD = DE
=> AHCE là hình bình hành
mà ^AHC = 90o => AHCE là hình chữ nhật.
b)
AHCE là hình chữ nhật => HE = AC
mà AC = AB (tam giác ABC cân ở A)
=> HE = AB
c)
\(\Delta ABC:CF\perp AD,AH\perp BC\)
mà CF giao AH tại G => G là trực tâm => \(BD\perp AC\)(1)
Tứ giác AEDF có:
AE = DF ( = 1/2 BC - tự c/m đường trung bình nhé)
AF = ED ( = 1/2 AB - cmtt)
=> Tứ giác AEDF là hình thoi => \(AD\perp EF\)(2 đường chéo vuông góc với nhau) (2)
Từ (1) và (2) => EF//BD (đpcm)
Chúc bạn học tốt!!!
a)Bn c/m AEBH là hbh (2 đchéo cắt tại trđiểm mỗi đường) rồi có góc H vuông nên là hcn
b)từ hcn ta có EH=AB, mà Ab=AC
=>EH=AC
c)ta có EH=ac, ea=HC(cùng bằng BH)
=>EACH là hbh
=>EH//AC
tứ giác EFCD có
ED//FC
ED=FC(cùng bằng AD)
nên EFCD là hbh
=>EF//CD
mà G nằm trên CD
>EF//CG
a) Tứ giác AHCE có
AD = DC
HD = DE
=> AHCE là hình bình hành
H =90°
=> AHCE là hình chữ nhật
b) Vì ∆ABC cân tại A
=>AB = AC
Mà AC = HE (AHCE là hình chữ nhật)
=> AB = HE
Mình mới làm tới câu b thôi
a: Xét tứ giác AHCE có
D là trung điểm chung của aC và HE
=>AHCE là hình bình hành
Hình bình hành AHCE có \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b:Ta có: AHCE là hình bình hành
=>AE//CH và AE=CH
=>AE//IH
Xét tứ giác AEHI có
AE//HI
AI//EH
Do đó: AEHI là hình bình hành
c: Ta có: AEHI là hình bình hành
=>AE=HI
mà AE=HC
nên HI=HC
=>H là trung điểm của CI
Xét tứ giác ACKI có
H là trung điểm chung của AK và CI
=>ACKI là hình bình hành
Hình bình hành ACKI có AK\(\perp\)CI
nên ACKI là hình thoi
a: Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
a, Xét tứ giác AHCE có
D là trung điểm AC (gt)
D là trung điểm EH (H đối xứng vs E qua D)
\(\rightarrow AHCE\) là hbh
Lại có : \(\widehat{H}=90^O\) ( do AH là đường cao của tam giác ABC)
Vậy tứ giác \(AHCE\)là hcn
b, Ta có
H là trung điểm BC ( do H là đường cao của tam giác ABC)
D là trung điểm AC (gt)
\(\rightarrow DH\) là đường trung bình của tam giác ABC
\(\rightarrow DH//AB\) (1)
Mà D thuộc\(EH\rightarrow EH//AB\)
Lại có:
\(EA//CH\) (do\(AHCE\) là hcn)
Mà H thuộc BC\(\rightarrow EA//BC\rightarrow EA//HB\left(2\right)\)
Từ (1) và (2) suy ra EABH là hbh
\(\rightarrow EH=AB\)