K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

(Hình bạn tự vẽ nhé)

a)

Tứ giác AHCE có:

AD = DC

HD = DE

=> AHCE là hình bình hành

mà ^AHC = 90o => AHCE là hình chữ nhật.

b)

AHCE là hình chữ nhật => HE = AC

mà AC = AB (tam giác ABC cân ở A)

=> HE = AB

c)

\(\Delta ABC:CF\perp AD,AH\perp BC\)

mà CF giao AH tại G => G là trực tâm => \(BD\perp AC\)(1)

Tứ giác AEDF có:

AE = DF ( = 1/2 BC - tự c/m đường trung bình nhé)

AF = ED ( = 1/2 AB - cmtt)

=> Tứ giác AEDF là hình thoi => \(AD\perp EF\)(2 đường chéo vuông góc với nhau) (2)

Từ (1) và (2) => EF//BD (đpcm)

Chúc bạn học tốt!!!

a)Bn c/m AEBH là hbh (2  đchéo cắt tại trđiểm mỗi đường) rồi có góc H vuông nên là hcn

b)từ hcn ta có EH=AB, mà Ab=AC 

=>EH=AC

c)ta có EH=ac, ea=HC(cùng bằng BH)

=>EACH là hbh

=>EH//AC

tứ giác EFCD có

ED//FC

ED=FC(cùng bằng AD)

nên EFCD là hbh

=>EF//CD

mà G nằm trên CD

>EF//CG

14 tháng 12 2021

a) Tứ giác AHCE có 

     AD = DC

     HD = DE

=> AHCE là hình bình hành

     H =90°

=> AHCE là hình chữ nhật

b) Vì ∆ABC cân tại A

    =>AB = AC

Mà AC = HE (AHCE là hình chữ nhật)

=> AB = HE

Mình mới làm tới câu b thôi

 

 

6 tháng 1 2020

a, Xét tứ giác AHCE có

D là trung điểm AC (gt)

D là trung điểm EH (H đối xứng vs E qua D)

\(\rightarrow AHCE\) là hbh

Lại có : \(\widehat{H}=90^O\) ( do AH là đường cao của tam giác ABC)

Vậy tứ giác \(AHCE\)là hcn

b, Ta có

H là trung điểm BC ( do H là đường cao của tam giác ABC)

D là trung điểm AC (gt)

\(\rightarrow DH\) là đường trung bình của tam giác ABC

\(\rightarrow DH//AB\) (1)

Mà D thuộc\(EH\rightarrow EH//AB\)

Lại có:

\(EA//CH\) (do\(AHCE\) là hcn)

Mà H thuộc BC\(\rightarrow EA//BC\rightarrow EA//HB\left(2\right)\)

Từ (1) và (2) suy ra EABH là hbh

\(\rightarrow EH=AB\)

10 tháng 12 2020

a) Xét tứ giác EDCB có ED//BC(gt)

nên EDCB là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang EDCB có \(\widehat{B}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)

nên EDCB là hình thang cân(Dấu hiệu nhận biết hình thang cân)

b) Xét tứ giác AKCH có 

D là trung điểm của đường chéo AC(gt)

D là trung điểm của đường chéo HK(H và K đối xứng nhau qua D)

Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AKCH có \(\widehat{AHC}=90^0\)(AH⊥BC)

nên AKCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(gt)

nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)

⇒H là trung điểm của BC

hay HB=HC

mà HC=AK(Hai cạnh đối trong hình chữ nhật AHCK)

nên BH=AK

Xét ΔABC có 

H là trung điểm của BC(cmt)

D là trung điểm của AC(gt)

Do đó: HD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒HD//AB và \(HD=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔABC có 

D là trung điểm của AC(gt)

DE//BC(gt)

Do đó: E là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}\)(2)

Từ (1) và (2) suy ra HD//AE và HD=AE

Xét tứ giác AEHD có 

HD//AE(cmt)

HD=AE(cmt)

Do đó: AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và ED cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AH cắt ED tại F

nên F là trung điểm chung của AH và ED

Xét tứ giác AKHB có 

AK//HB(AK//HC, B∈HC)

AK=HB(cmt)

Do đó: AKHB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà F là trung điểm của AH(cmt)

nên F là trung điểm của BK(đpcm)

a: Xét tứ giác AHBE có

M là trung điểm của AB

M là trung điểm của HE

Do đó: AHBE là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBE là hình chữ nhật

b: Xét tứ giác ABFC có

H là trung điểm của AF

H là trung điểm của BC

Do đó:ABFC là hình bình hành

mà AB=AC

nên ABFC là hình thoi

9 tháng 1 2022

a) Ta có: E đối xứng với H qua M (gt)

=> M là trung điểm của HE

Xét tứ giác AHBE có:

MA = MB (M là trung điểm của AB)

ME = MH (M là trung điểm của HE)

\(\widehat{AHB}=90^o\)(Vì AH là đường cao vuông góc với BC)

=> AHBE là hcn (đpcm)

b, Vì ABC là tam giác cân

=> AB = AC (1)

Vì F đối xứng với A qua H

=> FB = AB ; FC = AC (2)

Từ (1) và (2) => AB = AC = FC = FB

Xét tứ giác ABFC có: AB = AC = FC = FB (cm trên)

=> ABFC là hình thoi (đpcm) 

 

 

14 tháng 12 2020

Tự vẽ hình nhé:vv

a) Vì D là điểm đối xứng với H qua M => DM=MH

Có: M là giao điểm của 2 đường chéo AB và DH, 2 đường chéo này cắt nhau tại trung điểm của mỗi đường 

=> AHBD là hình bình hành (1)

Lại có: \(\widehat{AHB}=90^o\) (2)

Từ (1) và (2) => AHBD là hình chữ nhật.

b) Xét \(\Delta AKN\) và \(\Delta CHN\):

AN=CN(gt)

\(\widehat{KAN}=\widehat{HCN}\)(2 góc so le trong)

\(\widehat{ANK}=\widehat{CNH}\)(2 góc đối đỉnh)

=> ΔAKN=ΔCHN(g.c.g)

=> \(\left\{{}\begin{matrix}AK=HC\\KN=HN\end{matrix}\right.\)(2 cạnh t/ứ) 

Xét \(\Delta DHK\)có: M là trung điểm HD

                            N là trung điểm KH (cmt)

=> MN là đường trung bình của \(\Delta DHK\)

=> \(MN=\dfrac{1}{2}DK\)

Mà \(MN=\dfrac{1}{2}BC=BH=HC\) (vì MN là đường trung bình của tam giác ABC)

=> MN=AK

=> \(AK=\dfrac{1}{2}DK\)

=> A là trung điểm của DK.

Gửi lần thứ 2 rồi T.T

21 tháng 12 2021

Bài 3: 

a: Xét tứ giác AHBF có

E là trung điểm của AB

E là trung điểm của HF

Do đó: AHBF là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBF là hình chữ nhật

23 tháng 4 2020

a)ta có : A=E=F=90 => AEHF hình chữ nhật

b)ta có: Am=AN, HM=MC =>ACNH hbh

Ta có AH//CN => AHE =CNH (đv) = FEH mà FC//NE => EFCN hìn thang cân 

c)ta có OC, AM là trung tuyến của ∆ACH cắt nhau tại G => G là trọng tâm => AG =2/3 AM=2/3*AN/2=AN/3

=>AN=3AG