K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

Đề thiếu yêu cầu hay là thừa dữ kiện? Thực sự cm \(AM⊥BC\)không cần đến độ dài cạnh. Cần \(\Delta\)cân và 1 đường (ở đây là trung tuyến) là đủ!

(Bạn tự vẽ hình nhé!)

Ta có: \(\Delta ABC\)cân tại \(A\Rightarrow AM\)vừa là trung tuyến vừa là đường cao \(\Rightarrow AM⊥BC\)

10 tháng 3 2017

B A C M

a) Ta có tam giác ABC cân tại A => AM vừa là trung tuyến vừa là đường cao

=> AM vuông góc BC tại M

b) Vì M là trung điểm BC => MB = MC = BC/2 = 3/2 = 1,5 (cm)
Xét tam giác ABM vuông tại M (cmt) có:

   AM^2 + BM^2 = AB^2 (pytago)

   AM^2 + 1,5^2 = 5^2

   AM^2 + 2,25 = 25

  AM^2             = 25 - 2,25 = 22,75

=> AM = căn của 22,75 và AM xấp xỉ 4,8 (cm)

24 tháng 3 2022

a, Xét tam giác ABC cân tại A có AM là trung tuyến 

=> AM đồng thời là đường cao => AM vuông BC 

b, Ta có BM = BC/2 = 3/2 cm 

Theo định lí Pytago tam giác AMB vuông tại M

\(AM=\sqrt{AB^2-BM^2}=\dfrac{\sqrt{91}}{2}cm\)

3 tháng 5 2023

rep

a: Xét ΔAKM vuông tại K và ΔANM vuông tại N có

AM chung

góc KAM=góc NAM

=>ΔAKM=ΔANM

=>MK=MN

b: BM=CM=3cm

AM=căn 5^2-3^2=4cm

c; AK=AN

MK=MN

=>AM là trung trực của KN

=>AM vuông góc KN

15 tháng 4 2021

Dễ và cơ bản mà nhỉ:vv

a) Xét ∆ABM và ∆ACM:

AB=AC (∆ABC cân tại A)

BM=CM (AM là trung tuyến)

\(\widehat{ABM}=\widehat{ACM}\) (∆ABC cân tại A)

=> ∆ABM=∆ACM (c.g.c)

b) Theo câu a: ∆ABM=∆ACM 

=> \(\widehat{AMB}=\widehat{AMC}\)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (2 góc kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=90^o\)

=> AM vuông góc với BC

c) M là trung điểm của BC

=> \(MB=MC=\dfrac{BC}{2}=\dfrac{6}{2}=3\)

Áp dụng định lý Py-ta-go vào ∆ABM, ta có:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow5^2=AM^2+3^2\Rightarrow AM^2=5^2-3^2=16=4^2\)

\(\Rightarrow AM=4\) (cm)

Vậy AM=4cm.

b) Cm theo cách khác:

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM\(\perp\)BC(đpcm)

3 tháng 3 2022

a.Ta có: AB=AC ( gt )

=> Tam giác ABC cân tại A

Mà AM là đường trung tuyến => AM cũng là đường cao

=> AM vuông góc với BC

b. Ta có: BH = BC : 2 ( AM là đường trung tuyến )

=> BH = 32 : 2 = 16cm

Áp dụng định lý pitago vào tam giác vuông ABM, có:

\(AB^2=AM^2+BM^2\)

\(\Rightarrow AM=\sqrt{AB^2-BM^2}=\sqrt{34^2-16^2}=\sqrt{900}=30cm\)

c.Xét tam giác vuông BMF và tam giác vuông CME, có:

góc B = góc C ( ABC cân )

BM = CM ( gt )

Vậy tam giác vuông BMF = tam giác vuông CME ( cạnh huyền. góc nhọn)

=>  BF = CE ( 2 cạnh tương ứng )

=> AF = AE ( AB = AC; BF = CE )

=> Tam giác AEF cân tại A

=> AM vuông với EF (1)

Mà AM cũng vuông với BC (2)

Từ (1) và (2) suy ra EF//BC

d. ta có: BM = CM ( gt ) (3)

Mà trong tam giác vuông MCE có ME là cạnh huyền 

=> \(ME>MC\) (4)

Từ (3) và (4) suy ra \(ME>MB\)

a: Ta có:ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: BM=CM=BC/2=16cm

=>AM=30(cm)

c: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có

AM chung

\(\widehat{FAM}=\widehat{EAM}\)

Do đó: ΔAFM=ΔAEM

Suy ra: AF=AE

Xét ΔABC có AF/AB=AE/AC

nên FE//BC