K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nghề của e, ngày nào cx gặp bài này lựa a cho dễ nè :333 b;c tự lm bn nhé ! 

*) Định lí bổ sung : Trong tam giác cân, đường phân giác suất phát từ đỉnh ứng với cạnh đáy, đồng thời là đường trung tuyến.

Vì \(\Delta\) ABC là \(\Delta\) cân tại A có

AM là đường trung tuyến nên AM vừa là đường cao vừa là đường phân giác

=> \(\widehat{BAM}\)\(\widehat{MAC}\)

a, Xét \(\Delta\)AMB và \(\Delta\)MAC ta có 

\(\widehat{BAM}=\widehat{MAC}\left(cmt\right)\)

AM _ chung 

\(\widehat{AMB}=\widehat{AMC}\left(gt\right)\)

=> \(\Delta AMB=\Delta MAC\)(ch-cgv)

9 tháng 6 2020

a) Vì tam giác ABC là tam giác cân có

AM là đường trugn tuyến

nên AM vừa là đường cao vừa là đường phân giác

=> Góc BAM = góc MAC

Xét ΔAMB và Δ MAC có

góc BAM = góc CAM ( CMT)

AM chung

AMB = góc AMC ( cùng bằng 90 độ )

Vậy Tam giác ABM = tam giác AMC ( c-g-v-g-n-k)

b) Xét tam giác AHM và tam giác AKM có

AM chung Góc AHM =AKM ( = 90 độ)

HAM =MAK ( cmt câu a)

nên Tam giác AHM = tam giác AKM (c-h-g-n)

=> HM = MK

và BHM = MKC , góc B= C

Nên tam giác BHM = KMC

=> HB = KC

c) Ta có BP VUÔNG GÓC VỚI AC

và MK vuông góc với AC

Nên BP// MK

=> góc PBM = KMC

Mà KMC = HMB ( vÌ tam giác BHM = KMC )

Suy ra : PBM = góc HMB

Hay tam giác IBM cân tại I

7 tháng 3 2020

b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)

AB = 6; AC = 8

=> 6^2 + 8^2 = BC^2

=> BC^2 = 100

=> BC = 10 do BC > 0

Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A 

=> AM = BC/2

=> AM = 10 : 2 = 5 

b, xét tam giác BEC có : EM là trung tuyến

EM là đường cao

=> tam giác BEC cân tại E (định lí)

bạn ơi bài 2 nx giúp mk vs

1:

a: \(BC=\sqrt{6^2+8^2}=10cm\)

=>AM=10/2=5cm

b: Xét ΔEBC có

EM vừa là đường cao, vừa là trung tuyến

=>ΔEBC cân tại E

Bài 2:

Xét ΔBAE vuông tại A và ΔBHE vuông tại H co

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>BA=BH và EA=EH

=>BE là trung trực của AH

9 tháng 3 2022

giúp với :vvvv

9 tháng 3 2022

a) Xét \(\Delta MBH\) vuông tại H và \(\Delta MCK\) vuông tại K:

BM = CM (M là trung điểm BC).

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\Delta MBH=\Delta MCK\) (cạnh huyền - góc nhọn).