Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì O thuộc đường trung trực của cạnh AB nên OA = OB. Vì ba đường trung trực của một tam giác đồng quy và do tam giác ABC cân tại A nên OA là đường trung trực của BC, do đó AO ⊥ BC. Vì tam giác ABC cân tại A nên đường trung trực AO đồng thời là đường phân giác của góc A
+) Xét ΔAOB và ΔAOC có:
OA chung
AB = AC (do tam giác ABC cân tại A)
∠OAB = ∠OAC ( Do AO là tia phân giác của góc BAC)
Do đó ΔAOB = ΔAOC ( c.g.c) suy ra ∠(AOB) = ∠(AOC) .
Do tam giác ABC cân tại A nhưng không là tam giác đều nên O không là giao điểm của ba đường phân giác của tam giác ABC. Vậy O không cách đều ba cạnh của tam giác ABC.
Đáp số (C) AO ⊥ BC.
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(AN=NC=\dfrac{AC}{2}\)
mà AB=AC
nên AM=MB=AN=NC
Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
=>BN=CM
b: Xét ΔMBC và ΔNCB có
MB=NC
MC=NB
BC chung
Do đó: ΔMBC=ΔNCB
=>\(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{GBC}=\widehat{GCB}\)
=>ΔGBC cân tại G
c: Xét ΔABC có
BN,CM là các đường cao
BN cắt CM tại G
Do đó: G là trọng tâm của ΔABC
Xét ΔABC có
G là trọng tâm
AG cắt BC tại D
DO đó: \(AG=\dfrac{2}{3}AD=\dfrac{2}{3}\cdot3=2\left(cm\right)\)
Tự vẽ hình nha ;-;
a) Gọi AG cắt BC tại D
Tam giác ABC cân tại A, G là trọng tâm tam giác
=> AD vừa là đường trung tuyến, vừa là đường phân giác
=> AG là tia phân giác của góc BAC
b) Xét tam giác NBC và tam giác MCB có
BC chung
NBC=MCB ( do tam giác ABC cân tại A )
BN=CM ( tam giác ABC cân tại A => AB=AC => 1/2 AB= 1/2 AC)
=> Tam giác NBC= tam giác MCB ( c.g.c)
=> NC= MB
=> 1/3 NC =1/3 MB
( do G là trọng tâm tam giác ABC)
=> GN= GM
Chọn D