K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2021

Bạn tự vẽ hình nhé hình này rất dễ thôi :v

a)Xét tam giác cân ABC có:AM là trung tuyến

`=>` AM là đường cao

`=>AM bot BC`

Xét tam giác ABM và tam giác ACM có:

`AM` chung

`hat{AMB}=hat{AMC}=90^o(CMT)`

`BM=MC`(do m là trung điểm)

`=>Delta ABM=Delta ACM(cgc)`

`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:

`BM=CM`(M là trung điểm)

`hat{ABC}=hat{ACB}`(do tam giác ABC cân)

`=>Delta BHM=Delta CKM`(ch-gn)

`=>BH=CK`

a: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc FAE

Do đó: AEDF là hình vuông

b: ΔDEB vuông tại E

mà EM là trung tuyến

nên EM=MD

=>góc EMD=2*góc ABC

 

31 tháng 12 2017

Bài này dễ bạn tự vẽ hình nha 

a) \(\widehat{BAC}=1v\)

\(\widehat{AIH}=1v\)\(\left(HI\perp AC\right)\)

\(\widehat{AKH}=1v\)\(\left(HK\perp AB\right)\)

\(\Rightarrow\)\(AIHK-hcn\)

b) \(AD=BD\left(gt\right)\)

\(DM=DN\left(gt\right)\)

\(\Rightarrow\)\(AMBN-hbh\)  (1 )

\(AM=\frac{BC}{2}\)( vì AM là đường trung tuyến của tam giác ABC vuông tại A )

\(BM=\frac{BC}{2}\left(gt\right)\)

\(\Rightarrow\)\(AM=BM\)  (2 )

Từ ( 1 ) và ( 2 ) suy ra AMBN là hình thoi

31 tháng 12 2017

a)  Tứ giác  AIHK  có:  \(\widehat{HKA}=\widehat{KAI}=\widehat{AIH}=90^0\)

\(\Rightarrow\)\(AIHK\)là hình chữ nhật

b)  N là điểm đối xứng với M qua D

\(\Rightarrow\)DN = DM

Tứ giác  AMBN  có:  DA = DB;  DN = DM

\(\Rightarrow\)AMBN  là hình bình hành          (1)

\(\Delta ABC\)có:  MB = MC;  DA = DB

\(\Rightarrow\)MD  là dường trung bình 

\(\Rightarrow\)MD // AC

mà  AC \(\perp AB\)

nên  MD \(\perp AB\)    (2)

Từ  (1)  và  (2)  suy ra:  AMBN  là hình thoi

     Bài 1: Cho hình vuông ABCD, E là điểm thuộc cạnh DC, F là điểm trên tia đối của tia BC sao cho BF=DE.a/ chứng minh tam giác AEF vuông cân.b/ Gọi I là trung điểm EF. Lấy K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.     Bài 2: cho tam giác ABC vuông tại A có góc ABC=60 độ, kẻ tia Ax song song với BC. Trên tia Ax lấy D sao cho AD = DC.a/ Tính các góc BAD và DAC.b/ chứng minh ABCD là hình thang cân.c/...
Đọc tiếp

     Bài 1: Cho hình vuông ABCD, E là điểm thuộc cạnh DC, F là điểm trên tia đối của tia BC sao cho BF=DE.
a/ chứng minh tam giác AEF vuông cân.
b/ Gọi I là trung điểm EF. Lấy K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.
     Bài 2: cho tam giác ABC vuông tại A có góc ABC=60 độ, kẻ tia Ax song song với BC. Trên tia Ax lấy D sao cho AD = DC.
a/ Tính các góc BAD và DAC.
b/ chứng minh ABCD là hình thang cân.
c/ gọi E là trung điểm BC. Chứng minh ADEB là hình thoi.
d/ cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED.
     Bài 3: cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M, N lần lượt là trung điểm của BG và CG.
a/ chứng minh MNDE là hình bình hành.
b/ điều kiện của tam giác ABC để hình bình hành MNDE là hình chữ nhật, hình thoi.
c/ chứng minh DE + MN = BC.

~~~~~~~~~~~GIÚP MK VS CÁC BẠN LÀM BÀI NÀO CŨNG ĐƯỢC~~~~~~~~~~~~~~~~~

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

22 tháng 11 2017

Câu 4: Cho tam giác ABC vuông tại A. Biết AB=5cm, BC=13cm. Gọi H, K lần Lượt là trung điểm của AB và BC. Tính độ dài HK

giúp mình nhoa!!