Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: ΔABD=ΔACE
=>góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Hình dễ, bạn tự kẻ
- Từ A kẻ AH⊥BC (H∈BC)AH⊥BC (H∈BC). ΔABCΔABC vuông cân ở A có AH là đường cao đồng thời là đường trung tuyến
- Gọi giao điểm của AH và BD là G →G→G là trọng tâm ΔABC→AGAH=23ΔABC→AGAH=23
- ΔAEBcóBG⊥AE; AH⊥BE→GΔAEBcóBG⊥AE; AH⊥BE→G là trực tâm ΔABE→GE⊥AB→AC//GE→ECCH=23→EC=23CHΔABE→GE⊥AB→AC//GE→ECCH=23→EC=23CH
→HE=13CH=13CH→BE=BH+HE=CH+13CH=43CH→HE=13CH=13CH→BE=BH+HE=CH+13CH=43CH
- Ta có EB:EC=4CH32CH3=2→EB=2EC
a: Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
AD là phân giác của góc FAE
Do đó: AEDF là hình vuông
b: ΔDEB vuông tại E
mà EM là trung tuyến
nên EM=MD
=>góc EMD=2*góc ABC